We present electrical measurements from InGaAs 1D channel devices with Rashba-type, spin-orbit coupling present in the 2D contact regions. Suppressed backscattering as a result of the time-reversal asymmetry at the 1D channel entrance results in enhanced ballistic transport characteristics with clear quantised conductance plateaus up to 6 × (2e /h). Applying DC voltages between the source and drain ohmic contacts and an in-plane magnetic field confirms a ballistic transport picture. For asymmetric patterned gate biasing, a lateral spin-orbit coupling effect is weak. However, the Rashba-type spin-orbit coupling leads to a g-factor in the 1D channel that is reduced in magnitude from the 2D value of 9 to ~6.5 in the lowest subband when the effective Rashba field and the applied magnetic field are perpendicular.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aafd05 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!