Inhibiting transcription in cultured metazoan cells with actinomycin D to monitor mRNA turnover.

Methods

The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States; The Departments of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States. Electronic address:

Published: February 2019

Decay of transcribed mRNA is a key determinant of steady state mRNA levels in cells. Global analysis of mRNA decay in cultured cells has revealed amazing heterogeneity in rates of decay under normal growth conditions, with calculated half-lives ranging from several minutes to many days. The factors that are responsible for this wide range of decay rates are largely unknown, although our knowledge of trans-acting RNA binding proteins and non-coding RNAs that can control decay rates is increasing. Many methods have been used to try to determine mRNA decay rates under various experimental conditions in cultured cells, and transcription inhibitors like actinomycin D have probably the longest history of any technique for this purpose. Despite this long history of use, the actinomycin D method has been criticized as prone to artifacts, and as ineffective for some promoters. With appropriate guidelines and controls, however, it can be a versatile, effective technique for measuring endogenous mRNA decay in cultured mammalian and insect cells, as well as the decay of exogenously-expressed transcripts. It can be used readily on a genome-wide level, and is remarkably cost-effective. In this short review, we will discuss our utilization of this approach in these cells; we hope that these methods will allow more investigators to apply this useful technique to study mRNA decay under the appropriate conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392460PMC
http://dx.doi.org/10.1016/j.ymeth.2019.01.003DOI Listing

Publication Analysis

Top Keywords

mrna decay
16
decay rates
12
decay
9
decay cultured
8
cultured cells
8
mrna
7
cells
6
inhibiting transcription
4
cultured
4
transcription cultured
4

Similar Publications

Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.

ACS Appl Mater Interfaces

January 2025

Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.

View Article and Find Full Text PDF

tRNA m1A modification regulates cholesterol biosynthesis to promote antitumor immunity of CD8+ T cells.

J Exp Med

March 2025

Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.

View Article and Find Full Text PDF

In , the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σ). Understanding the regulation of RpoS is crucial for elucidating how is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the mRNA stability.

View Article and Find Full Text PDF

Background: Ferroptosis has emerged as a promising therapeutic target in cancer treatment. CEP55, a key regulator of cell mitosis, plays a significant role in the tumorigenesis of many malignancies. In this study, we elucidated the function of CEP55 in the ferroptosis of breast cancer (BC).

View Article and Find Full Text PDF

MELK prevents radiofrequency ablation-induced immunogenic cell death and antitumor immune response by stabilizing FABP5 in hepatocellular malignancies.

Mil Med Res

January 2025

Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.

Background: Radiofrequency ablation (RFA) is an efficient treatment with unlimited potential for liver cancer that can effectively reduce patient mortality. Understanding the biological process related with RFA treatment is important for improving treatment strategy. This study aimed to identify the critical targets for regulating the efficacy of RFA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!