Eph/ephrin interactions and their bidirectional signaling are integral part of the complex communication system between β-cells, essential for glucose homeostasis. Indeed, Eph/ephrin system was shown to be directly involved in the glucose-stimulated insulin secretion (GSIS) process occurring in the pancreatic islets. Here we tested the Eph antagonist UniPR500 as GSIS enhancer. UniPR500 was validated as EphA5-ephrin-A5 inhibitor in vitro and its efficacy as GSIS enhancer was assessed on EndoC-βH1 cells. The selectivity of UniPR500 was evaluated by testing this compound on a panel of well-known molecular targets responsible for the regulation of glucose homeostasis. Plasmatic levels of UniPR500 were measured by HPLC/MS approach after oral administration. Finally, UniPR500 was tested as hypoglycemic agent in healthy mice, in a non-genetic mouse model of insulin resistance (IR) and in a non-genetic mouse model of type 1 diabetes (T1D). The compound is an orally bioavailable and selective Eph antagonist, able to increase GSIS from EndoC-βH1 cells. When tested in vivo UniPR500 showed to improve glucose tolerance in healthy and IR mice. As expected by a GSIS enhancer acting on healthy β-cells, UniPR500 was ineffective when tested on a non-genetic mouse model of type 1 diabetes, where pancreatic function was severely compromised. In conclusion our findings suggest that Eph targeting is a new and valuable pharmacological strategy in the search of new hypoglycemic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2019.01.011 | DOI Listing |
Nutrients
January 2025
College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
Type 2 diabetes (T2D), the most common form, is marked by insulin resistance and β-cell failure. β-cell dysfunction under high-glucose-high-lipid (HG-HL) conditions is a key contributor to the progression of T2D. This study evaluates the comparative effects of 10 nM semaglutide, 10 nM tirzepatide, and 1 mM metformin, both alone and in combination, on INS-1 β-cell maintenance and function under HG-HL conditions.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China. Electronic address:
Purpose: The impaired function of islet β-cell is associated with the pathogenesis of type 2 diabetes mellitus (T2DM). γ-glutamylcysteine (γ-GC), an immediate precursor of glutathione (GSH), has antioxidant and neuroprotective functions. Its level has been reported to be down-regulated in hyperglycemia.
View Article and Find Full Text PDFJ Mol Endocrinol
February 2025
Glucose transporter type 2 (GLUT2), encoded by the Slc2a2 gene, is essential for glucose-stimulated insulin secretion (GSIS) in pancreatic islet β-cells, and low expression of GLUT2 is associated with β-cell dysfunction during the progression of type 2 diabetes in humans and animal models. Glucocorticoids are stress hormones that regulate inflammation and metabolism through the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily, and synthetic glucocorticoids are widely used for the treatment of inflammatory disorders. Prolonged exposure to glucocorticoids induces β-cell dysfunction and diabetes, but the effects of Slc2a2 gene repression in β-cells, if any, and the mechanisms involved remain unclear.
View Article and Find Full Text PDFDiabetes Obes Metab
February 2025
Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.
Objective: Although primarily secreted by the liver, Fibroblast Growth Factor 21 (FGF21) is also expressed in the pancreas, where its function remains unclear. This study aims to elucidate the role of the glucagon-FGF21 interaction in the metabolic benefits of SGLT2 inhibition (SGLT2i) and hypothesizes it is key to enhancing glucose and lipid metabolism in individuals with glucose intolerance or type 2 diabetes (T2D).
Methods: FGF21, FGF1R, and β-klotho expression in human pancreas was analysed by RNAscope, qPCR and immunofluorescent techniques.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!