Introduction: Surveys indicate that patients, particularly those suffering from chronic conditions, strongly benefit from the information found in social networks and online forums. One challenge in accessing online health information is to differentiate between factual and more subjective information. In this work, we evaluate the feasibility of exploiting lexical, syntactic, semantic, network-based and emotional properties of texts to automatically classify patient-generated contents into three types: "experiences", "facts" and "opinions", using machine learning algorithms. In this context, our goal is to develop automatic methods that will make online health information more easily accessible and useful for patients, professionals and researchers.

Material And Methods: We work with a set of 3000 posts to online health forums in breast cancer, morbus crohn and different allergies. Each sentence in a post is manually labeled as "experience", "fact" or "opinion". Using this data, we train a support vector machine algorithm to perform classification. The results are evaluated in a 10-fold cross validation procedure.

Results: Overall, we find that it is possible to predict the type of information contained in a forum post with a very high accuracy (over 80 percent) using simple text representations such as word embeddings and bags of words. We also analyze more complex features such as those based on the network properties, the polarity of words and the verbal tense of the sentences and show that, when combined with the previous ones, they can boost the results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326476PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209961PLOS

Publication Analysis

Top Keywords

online health
12
health forums
8
opinion classification
4
classification extracting
4
extracting facts
4
facts opinions
4
opinions experiences
4
health
4
experiences health
4
forums introduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!