A bottom-up process from precursor development for tin to plasma-enhanced atomic layer deposition (PEALD) for tin(IV) oxide and its successful implementation in a working thin-film transistor device is reported. PEALD of tin(IV) oxide thin films at low temperatures down to 60 °C employing tetrakis-(dimethylamino)propyl tin(IV) [Sn(DMP)] and oxygen plasma is demonstrated. The liquid precursor has been synthesized and thoroughly characterized with thermogravimetric analyses, revealing sufficient volatility and long-term thermal stability. [Sn(DMP)] demonstrates typical saturation behavior and constant growth rates of 0.27 or 0.42 Å cycle at 150 and 60 °C, respectively, in PEALD experiments. Within the ALD regime, the films are smooth, uniform, and of high purity. On the basis of these promising features, the PEALD process was optimized wherein a 6 nm thick tin oxide channel material layer deposited at 60 °C was applied in bottom-contact bottom-gate thin-film transistors, showing a remarkable on/off ratio of 10 and field-effect mobility of μ ≈ 12 cm V s for the as-deposited thin films deposited at such low temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b16443 | DOI Listing |
IUCrdata
December 2024
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1033, NO-0315 Oslo, Norway.
Tin(IV) sulfate dihydrate, Sn(SO)·2HO, was prepared in a reflux of sulfuric acid under oxidizing conditions. Its crystal structure was determined from powder synchrotron X-ray diffraction data and is constructed of (100) layers of [SnO(HO)] octa-hedra (point group symmetry 1) corner-connected by sulfate tetra-hedra. Hydrogen bonds of moderate strength between the water mol-ecules and sulfate O atoms hold the layers together.
View Article and Find Full Text PDFThe ring-opening polymerization (ROP) of l-lactide (l-LA) is the main method for synthesizing poly(l-lactide) (PLLA), in which choosing the catalyst is one of the most important parameters. In this work, we focused on the systematic study of catalysts based on p-block elements from period 5, such as indium(iii), tin(ii), tin(iv) and antimony(iii) acetates, which displayed contrasting performances influenced by the oxidation state of the metal center. Analysis of the obtained oligomers by different techniques, including nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), polarized optical microscopy (POM) and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), revealed the selectivity of each catalyst toward the ROP of l-LA.
View Article and Find Full Text PDFBiometals
October 2024
Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India.
Infectious diseases have a significant impact in the historical trajectory of humanity, exerting profound influence on societies, driving advancements in medical science, and significantly impacting individuals on a worldwide scale. Consequently, this research endeavours to identify potent agents combatting tuberculosis, inflammation, and microbial deformities. The investigation focuses on hydrazones (1,2) endowed eight organotin(IV) complexes, where hydrazones were derived from 2-acetyl-1H-indene-1,3(2H)-dione and 2-phenoxypropanehydrazide/2-(2,4-dichlorophenoxy)propanehydrazide.
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
October 2024
Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
The green synthesis of Tin(IV) oxide (SnO): Gold (Au) nanoparticles (NPs) using medicinal plant extract was investigated, and the NPs were characterized and tested as photosensitizers to produce reactive oxygen species (ROS). The cytotoxic effect on C26 cells was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) technique. The results showed their toxicity in a dose-dependent manner.
View Article and Find Full Text PDFRSC Adv
August 2024
College of Energy and Environmental Sciences, Al-Karkh University of Science 10081 Baghdad Iraq
In this study, a nanostructured tin(iv) oxide (SnO)/Si heterojunction UV photodetector was fabricated in response to laser pulses attained pulsed laser deposition (PLD). In particular, the photo-detection mechanisms of the proposed devices were thoroughly investigated considering multiple-profile dependency, namely, laser pulses, spectral response, and incident power. In detail, particle diameters of 25 and 41 nm with a bandgap alteration of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!