The prediction of daily stable warfarin dosage for a specific patient is difficult. To improve the predictive accuracy and to build a highly accurate predictive model, we developed an ensemble learning method, called evolutionary fuzzy c-mean (EFCM) clustering algorithm with support vector regression (SVR). A dataset of 517 Han Chinese patients was collected from the data of The First Affiliated Hospital of Soochow University and dataset of International Warfarin Pharmacogenetics Consortium for training and testing. In EFCM+SVR, we adopted SVR to build a generalized base model (SVR model). To achieve an accurate prediction on patients with large dosage, we proposed an EFCM clustering algorithm that can be used to cluster the training set and designed a clustering model on clusters and centroids. The SVR and clustering models were integrated into an ensemble model by stepwise functions. In the experiment, three artificial neural networks, SVR, two ensemble models, and three regression models were used as comparators to the EFCM+SVR model, which obtained the smallest mean absolute error (0.67 mg/d) in warfarin dose prediction and the largest R-squared (43.9%). The model achieved satisfactory prediction in terms of the percentage of patients whose predicted dose of warfarin was within 15% and 20% of the actual stable therapeutic dose (15%-p of 36% and 20%-p of 46.6%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2019.2891164 | DOI Listing |
Sci Rep
January 2025
College of Pharmacy, The Islamic University, Najaf, Iraq.
In the current years, gas-liquid membrane contactors (GLMCs) have been introduced as a promising, versatile and easy-to-operate technology for mitigating the emission of major greenhouse contaminants (i.e., CO and HS) to the ecosystem.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Groundwater resources constitute one of the primary sources of freshwater in semi-arid and arid climates. Monitoring the groundwater quality is an essential component of environmental management. In this study, a comprehensive comparison was conducted to analyze the performance of nine ensembles and regular machine learning (ML) methods in predicting two water quality parameters including total dissolved solids (TDS) and pH, in an area with semi-arid climate conditions.
View Article and Find Full Text PDFJ Math Biol
January 2025
Instituto de Ingeniería Matemática, Universidad de Valparaíso, Valparaíso, Chile.
We study the large-time behavior of an ensemble of entities obeying replicator-like stochastic dynamics with mean-field interactions as a model for a primordial ecology. We prove the propagation-of-chaos property and establish conditions for the strong persistence of the N-replicator system and the existence of invariant distributions for a class of associated McKean-Vlasov dynamics. In particular, our results show that, unlike typical models of neutral ecology, fitness equivalence does not need to be assumed but emerges as a condition for the persistence of the system.
View Article and Find Full Text PDFAcad Radiol
January 2025
Guangxi Medical University, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China (D.H., X.W.). Electronic address:
Rationale And Objectives: Accurate preoperative pathological staging of gastric cancer is crucial for optimal treatment selection and improved patient outcomes. Traditional imaging methods such as CT and endoscopy have limitations in staging accuracy.
Methods: This retrospective study included 691 gastric cancer patients treated from March 2017 to March 2024.
JMIR Cardio
December 2024
School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
Background: Cardiovascular disease remains the leading cause of mortality worldwide. Cardiac fibrosis impacts the underlying pathophysiology of many cardiovascular diseases by altering structural integrity and impairing electrical conduction. Identifying cardiac fibrosis is essential for the prognosis and management of cardiovascular disease; however, current diagnostic methods face challenges due to invasiveness, cost, and inaccessibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!