Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing.

Lab Chip

Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742 USA.

Published: January 2019

A multifunctional microfluidic platform combining on-demand aqueous-phase droplet generation, multi-droplet storage, and controlled merging of droplets selected from a storage library in a single integrated microfluidic device is described. A unique aspect of the technology is a microfluidic trap design comprising a droplet trap chamber and lateral bypass channels integrated with a microvalve that supports the capture and merger of multiple droplets over a wide range of individual droplet sizes. A storage unit comprising an array of microfluidic traps operates in a first-in first-out manner, allowing droplets stored within the library to be analyzed before sequentially delivering selected droplets to a downstream merging zone, while shunting other droplets to waste. Performance of the microfluidic trap is investigated for variations in bypass/chamber hydrodynamic resistance ratio, micro-chamber geometry, trapped droplet volume, and overall flow rate. The integrated microfluidic platform is then utilized to demonstrate the operational steps necessary for cell-based assays requiring the isolation of defined cell populations with single cell resolution, including encapsulation of individual cells within an aqueous-phase droplet carrier, screening or incubation of the immobilized cell-encapsulated droplets, and generation of controlled combinations of individual cells through the sequential droplet merging process. Beyond its utility for cell analysis, the presented platform represents a versatile approach to robust droplet generation, storage, and merging for use in a wide range of droplet-based microfluidics applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692136PMC
http://dx.doi.org/10.1039/c8lc01178hDOI Listing

Publication Analysis

Top Keywords

droplet generation
12
droplet
8
generation storage
8
microfluidic platform
8
aqueous-phase droplet
8
integrated microfluidic
8
microfluidic trap
8
wide range
8
individual cells
8
microfluidic
7

Similar Publications

Free fatty acids derived from lipophagy enhanced resistance to anoikis by activating Src in high-invasive clear cell renal cell carcinoma cells.

Cell Signal

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China. Electronic address:

Autophagy-mediated anoikis resistance plays a critical role in the initiation of tumor metastasis. Therefore, we investigated the role and mechanism of anoikis resistance mediated by free fatty acids (FFAs) derived from lipophagy in highly invasive clear cell renal cell carcinoma (ccRCC). Here, we found that the highly invasive ccRCC cell line Himi exhibited enhanced resistance to anoikis and elevated lipophagy levels.

View Article and Find Full Text PDF

Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets.

View Article and Find Full Text PDF

Exposure of lung epithelia to aerosols is omnipresent. Chronic exposure to polluted air is a significant factor in the development of pulmonary diseases, which are among the top global causes of death, including COVID-19, chronic obstructive pulmonary disease, lung cancer, and tuberculosis. As efforts to prevent and treat lung diseases increase, the development of pulmonary drug delivery systems has become a major area of interest.

View Article and Find Full Text PDF

Photopyroelectric tweezers for versatile manipulation.

Innovation (Camb)

January 2025

Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.

Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios.

View Article and Find Full Text PDF

The intricate morphology, physicochemical properties, and interacting proteins of lipid droplets (LDs) are associated with cell metabolism and related diseases. To uncover these layers of information, a solvatochromic and photosensitized LDs-targeted probe based on the furan-based D-D-π-A scaffold is developed to offer the following integrated functions. First, the turn-on fluorescence of the probe upon selectively binding to LDs allows for direct visualization of their location and morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!