Municipal wastewater treatment plants (WWTPs) discharge micropollutants like pharmaceuticals, pesticides, personal care products or endocrine disrupting chemicals but also nutrients. Both can adversely influence the freshwater ecosystem and may finally affect the ecological conditions. Many studies focus on the potential impact of large WWTPs even if smaller ones are more common, often less efficient and discharge into small creeks or the upper reaches of rivers. As a result, the receiving waters are characterized by relatively high shares of treated wastewater. Thus, the primary objective of this study was to investigate the ecotoxicological effects of a small WWTP on freshwater amphipods and mollusks in a small creek using an active and passive monitoring approach, accompanied by laboratory experiments (LE). In vitro assays with recombinant yeasts and the microtox assay with Aliivibrio fischeri were performed in parallel to determine the endocrine potential and the baseline toxicity. The evaluation of the effects of the analysed WWTP was possible due to its shutdown during our study and the application of the same in vivo and in vitro assays before and after the shutdown. During the operation of the WWTP the discharge of treated wastewater caused significantly higher mortalities and lower reproduction of the anaylsed invertebrates in the active and passive montoring as well as in the LEs. Furthermore, the amphipod species assemblage in the creek was affected downstream of the WWTP effluent. Besides, the endocrine activity and baseline toxicity were significantly higher downstream of the effluent. After the shutdown of the WWTP, the in vitro activity levels and adverse in vivo effects in the receiving water recovered quickly with no significant differences downstream of the former WWTP effluent compared to the upstream station. Furthermore, the previously disturbed amphipod species assemblage recovered significantly with a shift in favor of Gammarus fossarum downstream of the effluent. These biological results are consistent with a marked decline by 81.5% for the detected micropollutants in the receiving creek after the shutdown which points to a prominent role of micropollutants for the observed effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2018.1530328 | DOI Listing |
J Hazard Mater
January 2025
College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China. Electronic address:
The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy; Department of Biology University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Naples 80126, Italy; Institute of Water Research (IRSA) CNR Taranto, Italy. Electronic address:
The EU plastic strategy aims to reduce the environmental impact of the increasing plastic production, by replacing petrochemical-based polymers with biodegradable ones. But this mitigation measure for the plastamination might, in turn, generate bio-based microplastics in environments that are not necessarily safe. Biodegradable and non-biodegradable plastics, polylactic acid (PLA) and polypropylene (PP) respectively, and their leachates were used for testing microplastic (MP) effects on seven marine species from different trophic levels, including bacteria, algae, rotifers, copepods, amphipods and branchiopods.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, PR China. Electronic address:
The application of low-toxicity cosolvents in phytotoxicity tests is a common technique to enhance the distribution of non-water-soluble organic pollutants in the aqueous phase. In this study, the physiological and biochemical responses of rice seedlings to four commonly used organic solvents i.e.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China. Electronic address:
The concomitant prevalence of toxic cyanobacteria blooms and plastic pollution in aquatic ecosystems is emerging as a pressing global water pollution dilemma. While toxic cyanobacteria and microplastics (MPs) can each independently exert significant impacts on aquatic biota, the magnitude and trajectory of the combined interactions remains rudimentary. In this study, we evaluated how MPs influences cyanobacterial stress on keystone grazer Daphnia, focusing on population, individual, biochemical and toxicogenomic signatures.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235 13565-905, São Carlos, SP, Brazil.
The semiconductor copper tungstate (CuWO) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO particles (size of 161.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!