In recent years, rabies virus-derived peptide (RDP) has shown promise as a specific neural cell targeting ligand, however stability of the peptide in human serum was unknown. Herein, we report the molecular modelling and design of an optimised peptide sequence based on interactions of RDP with the α7 subunit of the nicotinic acetylcholine receptor (nAChR). The new sequence, named DAS, designed around a 5-mer sequence which demonstrated optimal nAChR binding , showed greatly improved stability for up to 8 hours in human serum in comparison to RDP, which degraded within 2 hours at 37 °C. analysis using SH-SY5Y neuroblastoma cells showed that DAS-conjugated nanoparticles containing the cytotoxic drug doxorubicin (DAS-Dox-NP) displayed significantly enhanced cytotoxicity compared with untargeted doxorubicin-loaded nanoparticles (Dox-NP). DAS-Dox-NP had no significant effect on non-neural cell types, confirming its neural-specific targeting properties. In this manuscript, we report the design and testing of an optimised peptide ligand, conjugated to a nanoparticulate delivery vehicle and specifically targeted to neural cells. Future impact of an innovative targeting peptide ligand combining the ability to selectively identify the target and facilitate cellular internalisation could enable the successful treatment of many neural cell disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2019.1567737DOI Listing

Publication Analysis

Top Keywords

targeting peptide
8
sh-sy5y neuroblastoma
8
neuroblastoma cells
8
neural cell
8
human serum
8
optimised peptide
8
peptide ligand
8
peptide
6
design stability
4
stability efficacy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!