Mounting evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated and implicated in the occurrence and development of a wide range of human malignancies. LINC00461, a novel cancer-related lncRNA, has been reported to be highly expressed and serve as oncogene in glioma; however, its biological role in breast cancer (BC) remains obscure. This study aimed to explore the role of LINC00461 in BC and elucidate the potential molecular mechanisms involved. In the current study, LINC00461 was found to be significantly upregulated in both BC tissues and cell lines. Besides, we found that high LINC00461 expression was associated with TNM stage and differentiation. Furthermore, functional studies demonstrated that LINC00461 expedited BC cell migration and invasion. Notably, LINC00461 was observed to enhance the expression of vimentin and zinc-finger E-box binding homeobox factor 1, suppress the expression of E-cadherin, and promote the activation of extracellular signal-regulated kinase and AKT signaling pathways. Mechanical investigations revealed that LINC00461 positively modulated integrin β3 (ITGB3) expression as miR-30a-5p sponge in BC cells. Taken together, LINC00461 exerts an oncogenic role in BC through miR-30a-5p/ITGB3 axis. Our data indicate that LINC00461 may be used to be a novel candidate therapeutic target and a valuable diagnostic biomarker for BC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.27435 | DOI Listing |
Discov Oncol
September 2024
Department of Urology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
Bladder cancer (BC) is a prevalent type of tumor in the urinary system, and it has been discovered that long non-coding RNA (lncRNA) plays a significant role in its occurrence and development. However, thus far, no reports have been published on the involvement of LINC00461 in BC. Here, we found that LINC00461 levels were upregulated in BC tissues and cell lines.
View Article and Find Full Text PDFTohoku J Exp Med
September 2024
Department of Emergency, Shenzhen Samii Medical Center.
Biomedicines
April 2024
Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic.
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis.
View Article and Find Full Text PDFPNAS Nexus
February 2024
Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India.
T-acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy characterized by the abnormal proliferation of immature T-cell precursors. Despite advances in immunophenotypic classification, understanding the molecular landscape and its impact on patient prognosis remains challenging. In this study, we conducted comprehensive RNA sequencing in a cohort of 35 patients with T-ALL to unravel the intricate transcriptomic profile.
View Article and Find Full Text PDFFront Genet
May 2023
Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China.
Long non-coding RNAs (lncRNAs), which are generally less functionally characterized or less annotated, evolve more rapidly than mRNAs and substantially possess fewer sequence conservation patterns than protein-coding genes across divergent species. People assume that the functional inference could be conducted on the evolutionarily conserved long non-coding RNAs as they are most likely to be functional. In the past decades, substantial progress has been made in discussions on the evolutionary conservation of non-coding genomic regions from multiple perspectives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!