The production of accurate and reliable data on metal toxicity during ecotoxicological bioassays is important for credible environmental risk assessments and management in aquatic environments. Actual measurements and reporting of contaminant concentrations in bioassays are, however, often disregarded; and potential contaminant loss attributable to adsorption processes (e.g., wall adsorption) in bioassays is widely omitted, which can have detrimental effects on calculated metal toxicity thresholds. In the present we assessed copper (Cu) mass balance during a standard 48-h bioassay test with blue mussel (Mytilus galloprovincialis) embryos to evaluate effects on calculated toxicity endpoints. We demonstrated that measured Cu concentrations at the test conclusion need to be used to quantify the risk of Cu toxicity because nominal Cu and initial Cu concentrations underestimate overall Cu toxicity by up to 1.5-fold, owing to Cu loss in solution attributable to adsorption and bioaccumulation processes. For the first time we provide evidence that extracellular adsorption to the biological surface of the embryos is the most important sink for total dissolved Cu in a bioassay. We also established that adsorbed extracellular Cu accumulation reduces Cu toxicity to embryos, potentially by inhibiting Cu from entering the cell of the mussel embryo. Environmental factors (e.g., salinity and dissolved organic carbon) did not influence the partitioning of Cu within the laboratory-based bioassay. The present results 1) demonstrate the importance of differentiating extra- and intracellular Cu pools to improve our understanding of Cu toxicity and associated processes, 2) reveal the potential for bias with respect to calculated Cu toxicity thresholds when results are based on nominal and initial Cu concentrations, and 3) point out the need to follow current guidelines for the testing of chemicals to standardize toxicity tests and data reporting. Environ Toxicol Chem 2019;38:561-574. © 2019 SETAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.4345 | DOI Listing |
J Med Food
January 2025
Department of Biomedical sciences, Oklahoma State University Centre for Health and Science, Oklahoma, USA.
The effect of the aqueous extract of (AAI) on gentamicin (GEN)-induced kidney injury was investigated. The study involves 20 adult male Wistar rats (housed in four separate plastic cages) such that graded dosages of AAI were administered to the experimental group for 14 days per oral (PO) before exposure to GEN toxicity (100 mg/kg) for 1 week. At the end of the study, comparisons of some markers of renal functions, antioxidant status, and inflammatory and apoptotic markers were made between the control, GEN, and AAI-pretreated groups at < .
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.
View Article and Find Full Text PDFSupport Care Cancer
January 2025
Harvard University, Cambridge, MA, USA.
Appl Microbiol Biotechnol
January 2025
Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.
View Article and Find Full Text PDFChem Asian J
January 2025
Indian Institute of Science Education and Research Thiruvananthapuram, chemistry, 2204, School of Chemistry, Vithura, 695551, Thiruvananthapuram, INDIA.
A one-pot methodology for the tandem acylation and oxidative aromatization of vinylogous thioesters to 2-acyl-5-(alkyl/arylthio)phenols is presented. Initially, cyclohexane-1,3-diones were converted to vinylogous thioesters through FeCl3-mediated thioenolization. This was followed by LiTMP-mediated acylation and DDQ-mediated aromatization, which resulted in the synthesis of sulphur derived oxybenzone analogs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!