Nanomaterials as versatile adsorbents for heavy metal ions in water: a review.

Environ Sci Pollut Res Int

Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India.

Published: March 2019

Over the years, heavy metal pollution has become a very serious environmental problem worldwide. Even though anthropogenic sources are believed to be the major cause of heavy metal pollution, they can also be introduced into the environment from natural geogenic sources. Heavy metals, because of their toxicity and carcinogenicity, are considered to be the most harmful contaminants of groundwater as well as surface water, a serious threat to both human and aquatic life. Nanomaterials due to their size and higher surface area to volume ratio show some unique properties compared to their bulk counterpart and have drawn significant attention of the scientific community in the last few decades. This large surface area can make these materials as effective adsorbents in pollution remediation studies. In this review, an attempt has been made to focus on the applicability of different types of nanomaterials, such as clay-nanocomposites, metal oxide-based nanomaterials, carbon nanotubes, and various polymeric nanocomposites as adsorbents for removal of variety of heavy metals, such as As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sn, U, V, and Zn, from water as reported during the last few years. This work tries to analyze the metal-nanomaterial interactions, the mechanism of adsorption, the adsorption capacities of the nanomaterials, and the kinetics of adsorption under various experimental conditions. The review brings forward the relation between the physicochemical properties of the nanomaterials and heavy metal adsorption on them.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-04093-yDOI Listing

Publication Analysis

Top Keywords

heavy metal
16
metal pollution
8
heavy metals
8
surface area
8
nanomaterials
6
heavy
6
metal
5
nanomaterials versatile
4
versatile adsorbents
4
adsorbents heavy
4

Similar Publications

One of the biggest public health problems globally is that of iron deficiency anemia. The present research aimed to determine the effect of prebiotics along with iron fortification on iron biomarkers in female anemic rats as some evidence suggests that prebiotics convert increase the solubility of iron, thereby enhancing its absorption. A total of 126 Sprague Dawley rats were fed with sixteen different types of fortified feed containing prebiotics (Inulin + Galacto Oligosaccharides) and Iron Fortificants (Sodium Ferric Ethylenediaminetetraacetate + Ferrous Sulphate).

View Article and Find Full Text PDF

Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.

View Article and Find Full Text PDF

In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.

View Article and Find Full Text PDF

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

A combination of gold nanoparticles and laser photobiomodulation to boost antioxidant defenses in the recovery of muscle injuries caused by Bothrops jararaca venom.

Lasers Med Sci

January 2025

Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.

Unlabelled: This study aimed to evaluate gold nanoparticles (GNPs) and photobiomodulation (PBM), associated with antibothropic serum (AS), to treat a muscle lesion induced by Bothrops jararaca venom.

Methods: 108 Swiss male mice were used, divided into nine groups (n = 12) with different combinations of treatments. Animals were inoculated with 250 µg of B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!