The ability of gellan gum-immobilised cells of the heavy metal-tolerant bacterium sp. AQ05-001 to utilise both heavy metal-free and heavy metal-polluted feathers (HMPFs) as substrates to produce keratinase enzyme was studied. Optimisation of the media pH, incubation temperature and immobilisation parameters (bead size, bead number, gellan gum concentration) was determined for the best possible production of keratinase using the one-factor-at-a-time technique. The results showed that the immobilised cells could tolerate a broader range of heavy metal concentrations and produced higher keratinase activity at a gellan gum concentration of 0.8% (w/v), a bead size of 3 mm, bead number of 250, pH of 8 and temperature of 30 °C. The entrapped bacterium was used repeatedly for ten cycles to produce keratinase using feathers polluted with 25 ppm of Co, Cu and Ag as substrates without the need for desorption. However, its inability to tolerate/utilise feathers polluted with Hg, Pb, and Zn above 5 ppm, and Ag and Cd above 10 ppm resulted in a considerable decrease in keratinase production. Furthermore, the immobilised cells could retain approximately 95% of their keratinase production capacity when 5 ppm of Co, Cu, and Ag, and 10 ppm of As and Cd were used to pollute feathers. When the feathers containing a mixture of Ag, Co, and Cu at 25 ppm each and Hg, Ni, Pb, and Zn at 5 ppm each were used as substrates, the immobilised cells maintained their operational stability and biological activity (keratinase production) at the end of 3rd and 4th cycles, respectively. The study indicates that HMPF can be effectively utilised as a substrate by the immobilised-cell system of sp. AQ05-001 for the semi-continuous production of keratinase enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320325PMC
http://dx.doi.org/10.1007/s13205-018-1555-xDOI Listing

Publication Analysis

Top Keywords

production keratinase
12
immobilised cells
12
keratinase production
12
keratinase
9
gellan gum-immobilised
8
heavy metal-free
8
produce keratinase
8
keratinase enzyme
8
bead size
8
bead number
8

Similar Publications

Biotechnological properties of Bacillus amylolyquefaciens B65 isolated from an artisanal tannery.

World J Microbiol Biotechnol

December 2024

Facultad de Ciencias Exactas, Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta, 4400, Argentina.

Leather industry is traditionally characterized by the use of large amounts of chemical agents, some of which are toxic to human health and the environment. However, during the last years, many efforts have been made with the aim of successfully implement enzymes as agents for different leather production stages. The lipopeptides produced by the Bacillus spp.

View Article and Find Full Text PDF
Article Synopsis
  • Keratin, a common environmental waste, is targeted for degradation in a study that isolated a heat-loving bacteria strain named Brevibacillus gelatini LD5 from a hot spring, which efficiently breaks down keratin.
  • The strain contains specific genes that aid in keratin degradation processes such as disulfide reduction and proteolysis, and produces various types of proteases that help in breaking down keratin from sources like chicken and dog feathers.
  • B. gelatini LD5 shows significant potential for practical applications in biodegrading keratin waste, with optimal activity at high temperatures and pH levels, making it effective for sustainable waste management.
View Article and Find Full Text PDF

Keratinases, a subclass of proteases, are used to degrade keratin thereby forming peptones and free amino acids. Bacillus paralicheniformis strain T7 was isolated from soil and exhibited high keratinase, protease, collagenase, amylase, xylanase, lipase, and phosphatase activities. Keratinases of the strain showed maximum activity at 70°C and pH 9.

View Article and Find Full Text PDF

Background: Chicken feathers contribute to large quantities of keratinaceous wastes that pose serious environmental problems and must be catered to properly. Chicken feathers are also a potential source of vital proteins, peptides, and amino acids, which could be used as low-cost animal feeds. Therefore, there has been increasing interest in keratinase-producing microbes for reprocessing and using keratinous biomaterials.

View Article and Find Full Text PDF

The production of keratinases was evaluated in submerged fermentation with Aspergillus niger and by pigs' swine hair in a batch bioreactor. Experimental planning was performed to assess the interaction between different variables. The enzyme extract produced was characterized at various pH and temperatures and subjected to enzyme concentration using a biphasic aqueous system and salt/solvent precipitation techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!