Background: Harnessing the halotolerant characteristics of microalgae provides a viable alternative for sustainable biomass and triacylglyceride (TAG) production. sp. IITRIND2 is a fast growing fresh water microalga that has the capability to thrive in high saline environments. To understand the microalga's adaptability, we studied its physiological and metabolic flexibility by studying differential protein, metabolite and lipid expression profiles using metabolomics, proteomics, real-time polymerase chain reaction, and lipidomics under high salinity conditions.
Results: On exposure to salinity, the microalga rewired its cellular reserves and ultrastructure, restricted the ions channels, and modulated its surface potential along with secretion of extrapolysaccharide to maintain homeostasis and resolve the cellular damage. The algal-omics studies suggested a well-organized salinity-driven metabolic adjustment by the microalga starting from increasing the negatively charged lipids, up regulation of proline and sugars accumulation, followed by direction of carbon and energy flux towards TAG synthesis. Furthermore, the omics studies indicated both de-novo and lipid cycling pathways at work for increasing the overall TAG accumulation inside the microalgal cells.
Conclusion: The salt response observed here is unique and is different from the well-known halotolerant microalga; , implying diversity in algal response with species. Based on the integrated algal-omics studies, four potential genetic targets belonging to two different metabolic pathways (salt tolerance and lipid production) were identified, which can be further tested in non-halotolerant algal strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318984 | PMC |
http://dx.doi.org/10.1186/s13068-018-1343-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!