A strategy to characterize chlorophyll protein interaction in LIL3.

Plant Methods

Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway.

Published: January 2019

Background: The function of proteins is at large determined by cofactors selectively bound to protein structure. Without chlorophyll specifically bound to protein, light harvesting and photosynthesis would not be possible. The binding of chlorophyll to light harvesting proteins has been extensively studied in reconstitution assays using proteins expressed in vitro; however, the mechanism of the reconstitution reaction remained unclear. We have shown that membrane integral light-harvesting-like protein, LIL3, binds chlorophyll with a Kd of 146 nM in vitro by thermophoresis. Here, reconstitution of chlorophyll binding to LIL3 has been characterized by four different methods.

Results: Structural changes in the reconstitution process have been investigated by light-scattering and differential Trp-fluorescence. For characterization of the chlorophyll binding site at LIL3, the analysis of LIL3 mutants has been conducted using native PAGE and thermophoresis. We find that the oxidized state of dithiothreitol is the essential component for reconstitution of chlorophyll binding to LIL3 in -Dodecyl β-d-maltoside micelles at RT. Chlorophyll increased the polydispersity of the micellar states while dithiothreitol maintained LIL3 in a partially unfolded state at RT. Dimerization of LIL3 was abolished if amino acids N174, R176, and E171 were mutated to Ala; while, chlorophyll binding to LIL3 was abolished in mutant N174A, but retained in E171A, and R176A albeit at an about six- and five-fold decreased dissociation constant. Results show that N174 of LIL3 is essential for binding chlorophyll .

Conclusions: Chlorophyll binding to LIL3 can be shown by thermophoresis, and native gel electrophoresis, while analysis of reconstitution conditions by dynamic light scattering and differential scanning fluorometry are of critical importance for method optimization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320596PMC
http://dx.doi.org/10.1186/s13007-018-0385-5DOI Listing

Publication Analysis

Top Keywords

chlorophyll binding
20
binding lil3
16
chlorophyll
11
lil3
11
bound protein
8
light harvesting
8
binding chlorophyll
8
reconstitution chlorophyll
8
lil3 abolished
8
binding
7

Similar Publications

Dichlormid protect wheat from fomesafen residual injury by increasing PPO expression and the photosynthesis characterize.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China. Electronic address:

Fomesafen is a herbicide with long persistence in soil, causing damage to succeeding crops. Dichlormid is a widely used safener protecting maize from chloroacetanilide and thiocarbamate injury. We found that dichlormid treatment could restore the growth of wheat seedlings exposed to fomesafen stress.

View Article and Find Full Text PDF

The Molecular Mechanism Regulating Flavonoid Production in Pall. Against UV-B Damage Is Mediated by .

Int J Mol Sci

December 2024

Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.

Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids.

View Article and Find Full Text PDF

Serious neurological disorders were associated with cadmium toxicity. Hence, this research aimed to investigate the potential neuroprotective impacts of the ethanolic extracts of Citrus aurantium unripe fruits and leaves (CAF and CAL, respectively) at doses 100 and 200 mg/kg against cadmium chloride-provoked brain dysfunction in rats for 30 consecutive days. HPLC for natural pigment content revealed that CAF implied higher contents of Chlorophyll B, while the CAL has a high yield of chlorophyll A and total carotenoid.

View Article and Find Full Text PDF

Polystyrene microplastics exhibit toxic effects on the widespread coral symbiotic Cladocopium goreaui.

Environ Res

January 2025

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.

Within the coral reef habitat, members of the Symbiodiniaceae family stand as pivotal symbionts for reef-building corals. However, the physiological response of Symbiodiniaceae on microplastics are still poorly understood. Research conducted in this investigation assessed the harmful impact of polystyrene microparticles (PS-MPs) on Cladocopium goreaui, a Symbiodiniaceae species with a broad distribution.

View Article and Find Full Text PDF

Eremopyrum triticeum is a typical spring ephemeral species, which in China mainly distributed in the desert regions of northern Xinjiang, and play an important role in the desert ecosystems. E. triticeum has several adaptive characteristics such as short growth rhythms, high photosynthetic efficiency, high seed production, drought and salt resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!