Biotechnological approach of greywater treatment and reuse for landscape irrigation in small communities.

Saudi J Biol Sci

National Center for Research and Study on Water and Energy, University Cadi Ayyad, Marrakech, Morocco.

Published: January 2019

A level of water quality intended for human consumption does not seem necessary for domestic uses such as irrigation of green spaces. Alternative water supplies like the use of greywater (GW) can thus be considered. However, GW contains pathogenic microorganisms and organic compounds which can cause environmental and health risks. As the risks related to recycling are unknown, GW treatment is necessary before reusing. To describe the risks related to GW reuses, the scientific approach performed in this study was to characterize domestic GW in order to select an appropriate treatment. The biotechnology chosen is a Horizontal sub-surface flow constructed wetland reactor. In order to minimize health risks, an optimization step based on UV disinfection was performed. The treatment performances were then determined. The treated GW produced in this study reached the threshold values expected by the Moroccan regulation for irrigation of green spaces with treated wastewater. Indeed, the COD and the TSS obtained in treated GW without disinfection are respectively 16.6 mg O L and 0.40 mg L. The horizontal sub-surface flow constructed wetland (HSSF CW) reactor has been used to treat 1.2 m/d of GW for 100 days. Three lawn plots have been irrigated respectively with raw GW, treated GW and tap water as a reference. Contrary to the lawn plot irrigated with raw GW, the risk analysis performed in this study has shown no significant difference between the law plots irrigated with treated GW combined with UV disinfection and the one irrigated with tap water. Overall, UV disinfection treated GW produced from the HSSF CW reactor developed in this experiment is thought to be an effective and feasible alternative for agricultural reuse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318812PMC
http://dx.doi.org/10.1016/j.sjbs.2017.01.006DOI Listing

Publication Analysis

Top Keywords

irrigation green
8
green spaces
8
health risks
8
performed study
8
horizontal sub-surface
8
sub-surface flow
8
flow constructed
8
constructed wetland
8
treated produced
8
hssf reactor
8

Similar Publications

Seeking effective improvement agent control measures to enhance the photosynthetic physiological traits and yield levels of spring maize is crucial for efficient green agriculture in arid regions. Therefore, this study was conducted to clarify the effects of coupling improvement agents under magnetoelectric activated water irrigation conditions on the photosynthetic physiological traits, grain nutrients, and yield of spring maize in the arid region of northwest China. Field experiments were set up with three concentrations of growth regulators: 400 times (G1), 500 times (G2), and 600 times (G3), and three amounts of : 15 kg/ha (R1), 45 kg/ha (R2), and 75 kg/ha (R3), along with a control group CK, making a total of 10 treatments applied in the field experiment.

View Article and Find Full Text PDF

Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.

View Article and Find Full Text PDF

Deepening water scarcity in breadbasket nations.

Nat Commun

January 2025

Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA.

Water is crucial for meeting sustainability targets, but its unsustainable use threatens human wellbeing and the environment. Past assessments of water scarcity (i.e.

View Article and Find Full Text PDF

The global scarcity of irrigation-grade water poses severe concerns in the agricultural sector. Desalination techniques including reverse osmosis, electrodialysis, capacitive deionization, membrane filtration, and multi-stage flash are some dynamic solutions to mitigate this challenge. In this study, novel bio-filter materials were explored and developed for the application of membrane-based electrodialysis.

View Article and Find Full Text PDF

Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!