G-protein coupled receptors (GPCRs) belong to the seven transmembrane receptor superfamily that transduce signals via G proteins in response to external stimuli to initiate different intracellular signaling pathways which culminate in specific cellular responses. The expression of diverse GPCRs at the plasma membrane of human spermatozoa suggests their involvement in the regulation of sperm fertility. However, the signaling events downstream of many GPCRs in spermatozoa remain uncharacterized. Here, we selected the kappa-opioid receptor (KOR) as a study model and applied phosphoproteomic approach based on TMT labeling and LC-MS/MS analyses. Quantitative coverage of more than 5000 proteins with over 3500 phosphorylation sites revealed changes in the phosphorylation levels of sperm-specific proteins involved in the regulation of the sperm fertility in response to a specific agonist of KOR, U50488H. Further functional studies indicate that KOR could be involved in the regulation of sperm fertile capacity by modulation of calcium channels. Our findings suggest that human spermatozoa possess unique features in the molecular mechanisms downstream of GPCRs which could be key regulators of sperm fertility and improved knowledge of these specific processes may contribute to the development of useful biochemical tools for diagnosis and treatment of male infertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427232 | PMC |
http://dx.doi.org/10.1074/mcp.RA118.001133 | DOI Listing |
Reprod Biol Endocrinol
January 2025
Reproductive Medicine Center, Zhuhai Maternal and Child Health Care Hospital, 543 Ningxi Road, Zhuhai, 519000, China.
Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.
Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.
Nutrients
January 2025
ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.
Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Institute for Regenerative Medicine and Biotherapy (IRMB), University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France.
Background: Sperm samples are separated into bad and good quality samples in function of their phenotype, but this does not indicate their genetic quality.
Methods: Here, we used GeneChip miRNA arrays to analyze microRNA expression in ten semen samples selected based on high-magnification morphology (score 6 vs. score 0) to identify miRNAs linked to sperm phenotype.
Antioxidants (Basel)
January 2025
Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia.
(1) Background: The RoXsta system has been developed as a rapid, effective means of profiling different types of antioxidant activity. The purpose of this study was to examine its performance utilizing a diverse array of biological fluids including semen, blood plasma, serum, urine, saliva, follicular fluid and plant extracts. (2) Methods: The RoXsta system was used to assess the ability of different fluids to suppress free radical formation as well as scavenge a variety of toxic oxygen metabolites including free radicals and both hydrogen and organic peroxides.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Reproductive Medicine, Reproductive Biology and Genetics, Peritox Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, 80054 Amiens, France.
Sperm cryopreservation provides patients undergoing oncological, surgical, or infertility treatments the opportunity to conceive their own children, using assisted reproductive technologies. However, the freezing-thawing process can negatively influence both the quantity and the quality of spermatozoa, mainly due to an excessive production of reactive oxygen species and/or an impaired antioxidant defense system in sperm. Aromatic and medicinal plants synthesize essential oils with antioxidant proprieties as a part of their ecological adaptation to environmental stress, thanks to their rich bioactive phytochemical components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!