Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Immune repertoire deep sequencing allows comprehensive characterization of antigen receptor-encoding genes in a lymphocyte population. We hypothesized that this method could enable a novel approach to diagnose disease by identifying antigen receptor sequence patterns associated with clinical phenotypes. In this study, we developed statistical classifiers of T-cell receptor (TCR) repertoires that distinguish tumor tissue from patient-matched healthy tissue of the same organ. The basis of both classifiers was a biophysicochemical motif in the complementarity determining region 3 (CDR3) of TCRβ chains. To develop each classifier, we extracted 4-mers from every TCRβ CDR3 and represented each 4-mer using biophysicochemical features of its amino acid sequence combined with quantification of 4-mer (or receptor) abundance. This representation was scored using a logistic regression model. Unlike typical logistic regression, the classifier is fitted and validated under the requirement that at least 1 positively labeled 4-mer appears in every tumor repertoire and no positively labeled 4-mers appear in healthy tissue repertoires. We applied our method to publicly available data in which tumor and adjacent healthy tissue were collected from each patient. Using a patient-holdout cross-validation, our method achieved classification accuracy of 93% and 94% for colorectal and breast cancer, respectively. The parameter values for each classifier revealed distinct biophysicochemical properties for tumor-associated 4-mers within each cancer type. We propose that such motifs might be used to develop novel immune-based cancer screening assays. SIGNIFICANCE: This study presents a novel computational approach to identify T-cell repertoire differences between normal and tumor tissue..
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445742 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-18-2292 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!