A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Micropatterning of porous silicon Bragg reflectors with poly(ethylene glycol) to fabricate cell microarrays: Towards single cell sensing. | LitMetric

Micropatterning of porous silicon Bragg reflectors with poly(ethylene glycol) to fabricate cell microarrays: Towards single cell sensing.

Biosens Bioelectron

School of Chemistry, Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney 2052, Australia. Electronic address:

Published: February 2019

The work presented here describes the development of an optical label-free biosensor based on a porous silicon (PSi) Bragg reflector to study heterogeneity in single cells. Photolithographic patterning of a poly(ethylene glycol) (PEG) hydrogel with a photoinitiator was employed on RGD peptide-modified PSi to create micropatterns with cell adhesive and cell repellent areas. Macrophage J774 cells were incubated to form cell microarrays and single cell arrays. Moreover, cells on the microarrays were lysed osmotically with Milli-Q™ water and the infiltration of cell lysate into the porous matrix was monitored by measuring the red shift in the reflectivity. On average, the magnitude of red shift increased with the increase in the number of cells on the micropatterns. The red shift from the spots with single cells varied from spot to spot emphasizing the heterogeneous nature of the individual cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.12.001DOI Listing

Publication Analysis

Top Keywords

red shift
12
porous silicon
8
cell microarrays
8
microarrays single
8
single cell
8
single cells
8
cell
7
cells
6
micropatterning porous
4
silicon bragg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!