A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surveillance of animal diseases through implementation of a Bayesian spatio-temporal model: A simulation example with neurological syndromes in horses and West Nile Virus. | LitMetric

A potentially sensitive way to detect disease outbreaks is syndromic surveillance, i.e. monitoring the number of syndromes reported in the population of interest, comparing it to the baseline rate, and drawing conclusions about outbreaks using statistical methods. A decision maker may use the results to take disease control actions or to initiate enhanced epidemiological investigations. In addition to the total count of syndromes there are often additional pieces of information to consider when assessing the probability of an outbreak. This includes clustering of syndromes in space and time as well as historical data on the occurrence of syndromes, seasonality of the disease, etc. In this paper, we show how Bayesian theory for syndromic surveillance applies to the occurrence of neurological syndromes in horses in France. Neurological syndromes in horses may be connected e.g. to West Nile Virus (WNV), a zoonotic disease of growing concern for public health in Europe. A Bayesian method for spatio-temporal cluster detection of syndromes and for determining the probability of an outbreak is presented. It is shown how surveillance can be performed simultaneously for a specific class of diseases (WNV or diseases similar to WNV in terms of the information available to the system) and a non-specific class of diseases (not similar to WNV in terms of the information available to the system). We also discuss some new extensions to the spatio-temporal models and the computational algorithms involved. It is shown step-by-step how data from historical WNV outbreaks and surveillance data for neurological syndromes can be used for model construction. The model is implemented using a Gibbs sampling procedure, and its sensitivity and specificity is evaluated. Finally, it is illustrated how predictive modelling of syndromes can be useful for decision making in animal health surveillance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prevetmed.2018.11.010DOI Listing

Publication Analysis

Top Keywords

neurological syndromes
16
syndromes horses
12
diseases wnv
12
syndromes
10
west nile
8
nile virus
8
syndromic surveillance
8
probability outbreak
8
class diseases
8
wnv terms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!