Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards.

BMC Evol Biol

School of Biological Sciences, University of Adelaide, Room 205E, Darling Building North Terrace, Adelaide, SA, 5005, Australia.

Published: January 2019

AI Article Synopsis

  • The study examines how growth patterns influence the cranial shape diversity of 18 species of Australian agamid lizards over the last 30 million years.
  • The research found that while juvenile lizards have similar cranial shapes, adult lizards exhibit significant differences in morphology due to varying growth trajectories linked to their ecological habits.
  • Ctenophorus species show minimal shape change reflecting terrestrial lifestyles, whereas related species like Pogona and Chlamydosaurus possess distinct cranial features suited for different behaviors, indicating a clear relationship between cranial morphology, ecology, and evolutionary history.

Article Abstract

Background: Morphological diversity among closely related animals can be the result of differing growth patterns. The Australian radiation of agamid lizards (Amphibolurinae) exhibits great ecological and morphological diversity, which they have achieved on a continent-wide scale, in a relatively short period of time (30 million years). Amphibolurines therefore make an ideal study group for examining ontogenetic allometry. We used two-dimensional landmark-based geometric morphometric methods to characterise the postnatal growth patterns in cranial shape of 18 species of amphibolurine lizards and investigate the associations between cranial morphology, and life habit and phylogeny.

Results: For most amphibolurine species, juveniles share a similar cranial phenotype, but by adulthood crania are more disparate in shape and occupy different sub-spaces of the total shape space. To achieve this disparity, crania do not follow a common post-natal growth pattern; there are differences among species in both the direction and magnitude of change in morphospace. We found that these growth patterns among the amphibolurines are significantly associated with ecological life habits. The clade Ctenophorus includes species that undergo small magnitudes of shape change during growth. They have dorsoventrally deep, blunt-snouted skulls (associated with terrestrial lifestyles), and also dorsoventrally shallow skulls (associated with saxicolous lifestyles). The sister clade to Ctenophorus, which includes the bearded dragon (Pogona), frill-neck lizard (Chlamydosaurus), and long-nosed dragon (Gowidon), exhibit broad and robust post-orbital regions and differing snout lengths (mainly associated with scansorial lifestyles).

Conclusions: Australian agamids show great variability in the timing of development and divergence of growth trajectories which results in a diversity of adult cranial shapes. Phylogenetic signal in cranial morphology appears to be largely overwritten by signals that reflect life habit. This knowledge about growth patterns and skull shape diversity in agamid lizards will be valuable for placing phylogenetic, functional and ecological studies in a morphological context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325775PMC
http://dx.doi.org/10.1186/s12862-018-1335-6DOI Listing

Publication Analysis

Top Keywords

growth patterns
16
agamid lizards
12
skull shape
8
morphological diversity
8
cranial morphology
8
life habit
8
clade ctenophorus
8
ctenophorus includes
8
skulls associated
8
growth
7

Similar Publications

Purpose: This study aims to investigate the biological roles and molecular mechanisms of Cathepsin G (CTSG) in the progression of non-small cell lung cancer (NSCLC).

Methods: Western blotting and immunohistochemistry analyses of clinical samples were performed to determine the expression levels of CTSG in patients with NSCLC. Bioinformatic analysis of clinical datasets was conducted to evaluate the correlation between CTSG and lymph node metastasis, tumor stage, and immune cell infiltration.

View Article and Find Full Text PDF

Region-specific biomechanical characterization of ascending thoracic aortic aneurysm of hypertensive patients with bicuspid aortic valves.

Biomech Model Mechanobiol

December 2024

Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 500 Zhennan Road, Shanghai, 200331, People's Republic of China.

Hypertension and bicuspid aortic valve (BAV) are key clinical factors that may affect local biomechanical properties of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate regional differences in biaxial mechanical properties of the ATAAs for the hypertensive patients with BAV. Fresh ATAA samples were harvested from 16 hypertensive patients (age, 66 ± 9 years) undergoing elective aortic surgery.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate that AKT1-Mediated NOTCH1 phosphorylation promotes gastric cancer (GC) progression via targeted regulation of IRS-1 transcription.

Methods: The study utilized databases such as PhosphositePlus, TRANSFAC, CHEA, GPS 5.0, and TCGA, along with experimental techniques including Western Blot, co-IP, in vitro kinase assay, construction of lentiviral overexpression and silencing vectors, immunoprecipitation, modified proteomics, immunofluorescence, ChIP-PCR, EdU assay, Transwell assay, and scratch assay to investigate the effects of AKT1-induced Notch1 phosphorylation on cell proliferation, invasion and migration in vitro, as well as growth and epithelial-mesenchymal transition (EMT) in vivo.

View Article and Find Full Text PDF

Background: FOXF2 was reported to involve in a variety of biological behaviors that include the development of the central nervous system, tissue homeostasis, epithelia-mesenchymal interactions, regulation of embryonic development, and organogenesis.

Purpose: Understanding how FOXF2 influences the growth and development of cancer could provide valuable insights for researchers to develop novel therapeutic strategies.

Results: In this review, we investigate the underlying impact of FOXF2 on tumor cells, including the transformation of cellular phenotype, capacity for migration, invasion, and proliferation, colonization of circulating cells, and formation of metastatic nodules.

View Article and Find Full Text PDF

Human pathogen Streptococcus pneumoniae forms multiple epigenetically and phenotypically distinct intra-populations by invertase PsrA-driven inversions of DNA methyltransferase hsdS genes in the colony opacity-determinant (cod) locus. As manifested by phase switch between opaque and transparent colonies, different genome methylation patterns or epigenomes confer pathogenesis-associated traits, but it is unknown how the pathogen controls the hsdS inversion orientations. Here, we report our finding of the SpxA1-TenA toxin-antitoxin (TA) system that regulates the orientations of hsdS inversions, and thereby bacterial epigenome and associated traits (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!