For the realization of the large-scale deployment of rechargeable Zn-air batteries, it is crucial to develop cost-effective, efficient, and stable bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, an integrated electrocatalyst consisting of Co(OH)/CoPt/N-CN was developed to enable both ORR and OER reactions for Zn-air batteries. The hierarchical Co(OH)/CoPt/N-CN electrocatalyst has desirable electrochemical properties, with comparable activity and better durability than commercial Pt/C for ORR and improved activity and long-term stability than commercial IrO catalyst for OER. When implemented as air-cathode for rechargeable Zn-air batteries, Co(OH)/CoPt/N-CN exhibited a high power-density of 171 mW cm, a specific capacity of 812 mA h g, and a robust cycling life. Interestingly, the hierarchical structure remained intact upon charge and discharge tests, suggesting potential long-term use in the Zn-air battery technology. The material development strategy presented here can enrich the toolbox for the design and construction of cost-effective, efficient, and robust bi-functional electrocatalysts for ORR and OER toward rechargeable Zn-air battery applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b18424 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
Rechargeable Zn-air batteries (RZABs) are poised for industrial application, yet they require low-cost, high-performance catalysts that efficiently facilitate both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The pivotal challenge lies in designing multimetal active sites and optimizing the carbon skeleton structure to modulate catalyst activity. In this study, we introduce a novel hierarchical porous carbon-supported FeCoNi bifunctional catalyst, synthesized via a spray combustion method.
View Article and Find Full Text PDFSmall Methods
January 2025
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
Integration of different active sites by heterostructure engineering is pivotal to optimize the intrinsic activities of an oxygen electrocatalyst and much needed to enhance the performance of rechargeable Zn-air batteries (ZABs). Herein, a biphasic nanoarchitecture encased in in situ grown N-doped graphitic carbon (MnO/Co-NGC) with heterointerfacial sites are constructed. The density functional theory model reveals formation of lattice oxygen bridged heterostructure with pyridinic nitrogen atoms anchored Co species, which facilitate adsorption of oxygen intermediates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.
This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Zn-air batteries (ZABs) present high energy density and high safety but suffer from low oxygen reaction reversibility and dendrite growth at Zn electrode in alkaline electrolytes. Non-alkaline electrolytes have been considered recently for improving the interfacial processes in ZABs. However, the dynamic evolution and reaction mechanisms regulated by electrolytes at both the positive and Zn negative electrodes remain elusive.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India. Electronic address:
Rechargeable zinc-air batteries (ZABs) with high-performance and stability is desirable for encouraging the transition of the technology from academia to industries. However, achieving this balance remains a formidable challenge, primarily due to the requirement of robust, earth-abundant reversible oxygen electrocatalyst. The present study introduces a simple strategy to synthesize Co-N rich nanoalloy with N-doped porous carbon tubes (NiCo@NPCTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!