Gonorrhea is a major global public health problem with emergence of multiple drug-resistant strains with no effective vaccine. This retrospective cohort study aimed to estimate the effectiveness of the New Zealand meningococcal B vaccine against gonorrhea-associated hospitalization. The cohort consisted of individuals born from 1984 to 1999 residing in New Zealand. Therefore, it was eligible for meningococcal B vaccination from 2004 to 2008. Administrative datasets of demographics, customs, hospitalization, education, income tax, and immunization were linked using the national Integrated Data Infrastructure. The primary outcome was hospitalization with a primary diagnosis of gonorrhea. Cox's proportional hazards models were applied with a Firth correction for rare outcomes to generate estimates of hazard ratios. Vaccine effectiveness estimates were calculated as 1-Hazard Ratio expressed as a percentage. There were 1,143,897 eligible cohort members with 135 missing information on gender, 16,245 missing ethnicity, and 197,502 missing deprivation. Therefore, only 935,496 cohort members were included in the analysis. After adjustment for gender, ethnicity, and deprivation, vaccine effectiveness (MeNZB™) against hospitalization caused by gonorrhea was estimated to be 24% (95% CI 1⁻42%). In conclusion, the data suggests vaccination with MeNZB™ significantly reduced the rate of hospitalization from gonorrhea. This supports prior research indicating possible cross protection of this vaccine against gonorrhea acquisition and disease in the outpatient setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466174 | PMC |
http://dx.doi.org/10.3390/vaccines7010005 | DOI Listing |
Vaccines (Basel)
November 2024
Laboratory of Proteolytic Enzyme Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia.
IgA1 protease is one of the virulence factors of , and other pathogens causing bacterial meningitis. The aim of this research is to create recombinant proteins based on fragments of the mature IgA1 protease A-P from serogroup B strain H44/76. These proteins are potential components of an antimeningococcal vaccine for protection against infections caused by pathogenic strains of and other bacteria producing serine-type IgA1 proteases.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
Background: This study aims to evaluate parents' knowledge about vaccination targeted for adolescents.
Methods: The cross-sectional survey was conducted between February and April 2024 in a sample of parents of adolescents attending middle and high schools in Southern Italy.
Results: Only 10.
Microorganisms
December 2024
Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France.
Most cases of invasive meningococcal disease (IMD) in Europe are caused by isolates of the serogroups B, C, W, and Y. We aimed to explore cases caused by other unusual serogroups. We retrospectively screened IMD cases in the databases of the National Reference Center for Meningococci and in France between 2014 and 2023.
View Article and Find Full Text PDFPLoS One
January 2025
School of Mathematics, Manchester University, Manchester, United Kingdom.
The genus Neisseria includes two major human pathogens: N. meningitidis causing bacterial meningitis/septicemia and N. gonorrhoeae causing gonorrhoea.
View Article and Find Full Text PDFChina CDC Wkly
December 2024
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China.
What Is Already Known About This Topic?: From 2010 to 2012, the incidence of adverse vaccine reactions from meningococcal vaccine (MenV) in China ranged from 8.46 to 56.30 per 100,000 doses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!