Adult Leukodystrophies: A Step-by-Step Diagnostic Approach.

Radiographics

From the Neuroradiology Section, Instituto de Radiologia (InRad), Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), R. Dr. Ovídio Pires de Campos 75, São Paulo, SP 05403-010, Brazil (L.L.R., C.d.C.L., L.T.L.); and Neurogenetics Unit, Department of Neurology, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil (A.R.B.d.P., F.K.).

Published: March 2020

Leukodystrophies usually affect children, but in the last several decades, many instances of adult leukodystrophies have been reported in the medical literature. Because the clinical manifestation of these diseases can be nonspecific, MRI can help with establishing a diagnosis. A step-by-step approach to assist in the diagnosis of adult leukodystrophies is proposed in this article. The first step is to identify symmetric white matter involvement, which is more commonly observed in these patients. The next step is to fit the symmetric white matter involvement into one of the proposed patterns. However, a patient may present with more than one pattern of white matter involvement. Thus, the third step is to evaluate for five distinct characteristics-including enhancement, lesions with signal intensity similar to that of cerebrospinal fluid, susceptibility-weighted MRI signal intensity abnormalities, abnormal peaks at MR spectroscopy, and spinal cord involvement-to further narrow the differential diagnosis. RSNA, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1148/rg.2019180081DOI Listing

Publication Analysis

Top Keywords

adult leukodystrophies
12
white matter
12
matter involvement
12
symmetric white
8
signal intensity
8
leukodystrophies step-by-step
4
step-by-step diagnostic
4
diagnostic approach
4
approach leukodystrophies
4
leukodystrophies affect
4

Similar Publications

Relative Frequency of Metachromatic Leukodystrophy in Egypt: A Reference Laboratory Report.

Front Biosci (Schol Ed)

December 2024

Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622 Cairo, Egypt.

Background: Metachromatic leukodystrophy (MLD) is an autosomal recessive hereditary neurodegenerative disease caused by a deficiency in arylsulfatase A (ARSA) activity and belongs to the group of lysosomal storage diseases. A biochemical diagnosis of MLD is based on determining the residual ARSA activity in leukocytes, skin fibroblasts, and urine. This study documents our biochemical experience and estimates the relative frequency of MLD over 21 years (2001-2022).

View Article and Find Full Text PDF

Characterization of gallbladder disease in metachromatic leukodystrophy across the lifespan.

Mol Genet Metab

December 2024

The Children's Hospital of Philadelphia, Neurology, 3401 Civic Center Blvd, Philadelphia 19104, PA, USA. Electronic address:

Metachromatic leukodystrophy (MLD) is a progressive demyelinating disorder resulting from the toxic accumulation of sulfatides. The stereotyped neurodegeneration of MLD is well understood, and cases are categorized into subtypes by age at neurologic onset: late infantile (LI), juvenile (J), and adult. The systemic burden of disease, such as gallbladder involvement, however, is less well characterized.

View Article and Find Full Text PDF

TREX1 mutations underlie a variety of human diseases, including retinal vasculopathy with cerebral leukoencephalopathy (RVCL or RVCL-S), a catastrophic adult-onset vasculopathy that is often confused with multiple sclerosis, systemic vasculitis, or systemic lupus erythematosus. Patients with RVCL develop brain, retinal, liver, and kidney disease around age 35-55, leading to premature death in 100% of patients expressing an autosomal dominant C-terminally truncated form of TREX1. We previously demonstrated that RVCL is characterized by high levels of DNA damage, premature cellular senescence, and risk of early-onset breast cancer before age 45.

View Article and Find Full Text PDF

Background: Alexander disease is an autosomal dominant leukodystrophy caused by heterozygous pathogenic variants in the glial fibrillar acidic protein (GFAP) gene. Although increasingly recognised, there is evidence that Alexander disease, particularly later-onset disease, is significantly underdiagnosed and its true prevalence is unknown (the only population-based prevalence was estimated at one in 2.7 million).

View Article and Find Full Text PDF

A novel disease-causing variant associated with a milder phenotype of AARS2-related leukodystrophy - A case report.

Mol Genet Metab Rep

December 2024

Centro de Genética Preditiva e Preventiva (CGPP), Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.

Article Synopsis
  • Adult-onset leukodystrophies are rare neurological disorders that lead to the degeneration of white matter in the brain, with one case linked to a novel gene variant.
  • A 40-year-old patient presented with chronic headaches and a history of depression, showing significant brain changes on MRI, along with two genetic variants identified through whole-exome sequencing.
  • This case highlights the variable presentations of adult-onset leukodystrophies and suggests that some genetic variants may result in milder symptoms than typically expected.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!