The cohesive energy of α-fluorine, with C2/c space group symmetry, was calculated at benchmark quality by applying the method of increments. The known experimental X-ray structure data needed to be refined, since the reported intramolecular bond length was unrealistically large. At the CCSD(T) level, including corrections for zero-point energy, the basis set superposition error, and extrapolated to the complete basis set limit, a cohesive energy of -8.72 kJ mol was calculated, which agrees well with the 0 K-extrapolated experimental value of -8.35 kJ mol . Comparison of the C2/c structure with a Cmca structure, isotypic to that of chlorine, bromine, and iodine reveals that the origin of the different structure of solid fluorine, compared to the heavier halogens, is the lack of significantly stabilizing σ-hole interactions. In addition, the wave numbers of the stretching mode in solid fluorine were calculated at coupled cluster level and compared to newly recorded Raman spectra of condensed fluorine. Both experiment and calculation indicate a slight up-shift for the stretching mode by 2 or 5 cm , respectively, with respect to a free F molecule in the gas phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201805300 | DOI Listing |
Drug Dev Ind Pharm
January 2025
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.
Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.
Nanoscale
January 2025
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.
View Article and Find Full Text PDFHypothesis: The oil phase controls the persistence length and aqueous channel diameter of reverse wormlike micelles (RWLMs), specifically by tuning the cohesive energy density of alkanes.
Experiments: We explore the influence of alkanes with varying chain lengths on the rheological properties, structural parameters, and morphology of RWLMs. To establish a link between the solvent characteristics and the structure of RWLMs, we employ a diverse set of complementary techniques, including rheological analysis, small-angle X-ray scattering (SAXS), Fourier-transform infrared (FT-IR) spectroscopy, and cryogenic transmission electron microscopy (cryo-TEM).
J Environ Manage
January 2025
Indian Institute of Management Bodh Gaya (IIM Bodh Gaya), Uruvela, Prabandh Vihar, Bodh Gaya, 824234, Gaya, Bihar, India. Electronic address:
The relentless surge in carbon emissions is exacting a devastating toll on human wellbeing, critical infrastructure, and natural ecosystems, leaving a stark and distressing legacy of destruction. Communities worldwide are reeling from the impacts of pervasive smog, record-breaking wildfires, and deadly heatwaves-manifestations of a climate crisis that grows more severe by the day. Once a vanguard of environmental policy, the Organisation for Economic Co-operation and Development (OECD) now struggles with exceeding emissions targets, eroding its credibility and influence.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!