Background: High-intensity focused ultrasound (HIFU) for non-invasive treatment of a range of internal pathologies including cancers of major organs and cerebral pathologies is in exponential growth. Systems, however, operate at relatively low frequencies, in the range of 200-2000 kHz as required for deep axial penetration of the body. HIFU utilizing frequencies in excess of 15 MHz has so far not been explored, but presents an opportunity to extend the HIFU modality to target specific dermal lesions and small animal research.
Materials And Methods: A new 20-MHz HIFU system (TOOsonix ONE-R) with narrow focus corresponding to the dermis was studied in acoustic skin equivalents, for example, in a tissue-mimicking gel and in bovine liver. HIFU lesion geometry, depth, and diameter were determined. The temperature increase in the focal point was measured as a function of acoustic power and the duration of HIFU exposure.
Results: The system produces highly reproducible ultrasound lesions with predictable and configurable depths of 1-2 mm, thus corresponding to the depth of the human dermis. The lesion geometry was elongated triangular and sized 0.1-0.5 mm, convergent to a focal point skin deep. Focal point temperature ranged between 40 and 90°C depending on the chosen setting. Observations were confirmed ex vivo in bovine liver and porcine muscle. Variation of acoustic power and duration of exposure produced linear effects in the range of the settings studied. Thus, effects could be adjusted within the temperature interval and spatial field relevant for clinical therapy and experimental intervention targeting the dermal layer of human skin.
Conclusion: The tested 20-MHz HIFU system for dermal applications fulfilled key prerequisite of narrow-field HIFU dedicated to cutaneous applications regarding reproducibility, geometry, and small size of the applied ultrasound lesions. Controlled adjustment of acoustic lesions within the temperature range 40-90°C qualifies the system for a range of non-ablative and ablative applications in dermatological therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/srt.12661 | DOI Listing |
Adv Sci (Weinh)
January 2025
The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.
Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application.
View Article and Find Full Text PDFLasers Surg Med
January 2025
Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
J Mater Chem B
January 2025
Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
Rheumatoid arthritis (RA) is an autoimmune disease that seriously threatens human health and affects the quality of life of patients. At present, pharmacotherapy is still the mainstream treatment for RA, but most methods have shortcomings, such as poor drug targeting, a low effective drug dosage at the inflammatory site, and high systemic toxicity. The combined application of drug-loaded nanobubbles and ultrasound technology provides a new technique for the treatment of RA.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
This paper describes the design and initial proof-of-concept of a single pre-clinical transcranial focused ultrasound (FUS) system capable of performing histotripsy (mechanical ablation), hyperthermia, blood-brain barrier opening (BBBO), sonodynamic therapy, or neuromodulation in a murine brain. We have termed it the All-in-One FUS system for murine brain studies, which is the first FUS system of its kind. The 1.
View Article and Find Full Text PDFFront Reprod Health
December 2024
Department of Obstetrics and Gynaecology, Fribourg University Hospital, Fribourg, Switzerland.
Adenomyosis is a commonly encountered pathology in women of reproductive age and frequently coexists with infertility. The effect of adenomyosis on fertility, particularly on fertilisation and intracytoplasmic sperm injection outcomes, is not well understood. Various pretreatment modalities have been used to improve pregnancy rates and live birth outcomes; however, because of a lack of high-quality evidence, there is no clear consensus on the best pretreatment option.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!