For the first time, CaV6O16·3H2O (CVO), synthesized via a highly efficient and fast microwave reaction, is used as a cathode material for aqueous zinc-ion batteries. Ex situ X-ray diffraction confirms the structure of this material to be stable upon reversible Zn2+ intercalation, due to its large interlayer distance (8.08 Å). The pillaring effect of calcium makes the as-prepared CVO an excellent Zn2+ cation host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cc07243d | DOI Listing |
PLoS One
January 2025
Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
Background: Cochlear implants (CI) with off-the-ear (OTE) and behind-the-ear (BTE) speech processors differ in user experience and audiological performance, impacting speech perception, comfort, and satisfaction.
Objectives: This systematic review explores audiological outcomes (speech perception in quiet and noise) and non-audiological factors (device handling, comfort, cosmetics, overall satisfaction) of OTE and BTE speech processors in CI recipients.
Methods: We conducted a systematic review following PRISMA-S guidelines, examining Medline, Embase, Cochrane Library, Scopus, and ProQuest Dissertations and Theses.
Angew Chem Int Ed Engl
January 2025
University of Kiel, Physics, Olshausenstr. 40, 24098, Kiel, GERMANY.
The influence of coadsorbed ions on adsorbate diffusion, an inherent effect at solid-liquid interfaces, was studied for adsorbed sulfur on Ag(100) electrodes in the presence of bromide or iodide. Quantitative in situ high-speed scanning tunnelling microscopy (video-STM) measurements were performed both in the potential regime of the c(2×2) halide adlayer at its saturation coverage and in the regime of a disordered adlayer where the halide coverage increases with potential. These studies reveal a surprising non-monotonic potential dependence of Sad diffusion with an initial increase with halide coverage, followed by a decrease upon halide adlayer ordering into the c(2×2) structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
For lithium-ion batteries, silicon monoxide is a potential anode material, but its application is limited by its relatively large irreversible capacity loss, which leads to its low initial Coulombic efficiency (ICE). In this study, we conduct a two-step reaction for the formation of silicon oxide-based materials, including a magnesiothermic reduction of SiO with Mg, followed by the solid-state lithiation of silicon oxide with LiCO. Our results demonstrate that Mg can reduce SiO to Si and form MgSiO, while LiCO reacts with SiO to form LiSiO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.
This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.
View Article and Find Full Text PDFChemSusChem
January 2025
Gebze Technical University, Department of Chemical Engineering, Gebze, 41400, Kocaeli, TURKEY.
This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!