Enhanced lipid and starch productivity of microalga ( sp. ) with nitrogen limitation following effective pretreatments for biofuel production.

Biotechnol Rep (Amst)

Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand.

Published: March 2019

The study was conducted to evaluate the conditions to enhance the accumulation of lipids and starch in sp. for the production of biofuel. The sp. was cultivated on BG-11 medium under optimized light intensity. The nitrogen limitation (NL) enhanced the accumulation of both starch and lipids and resulted in 34.02% total sugars as compared to 22.57% on nitrogen supplemented (NS) media only. Similarly, the nitrogen supplemented (NS) media produced 17.05% lipids as compared to 29.59% lipids by NL media. The biomass was investigated for biodiesel and bioethanol production by adopting different pretreatment strategies, such as enzyme, acid and alkaline pretreatments. The alkaline pretreatment was found to be efficient strategy (23.67 wt% sugars/g algal biomass: 1.2% (w/v) at 140 ⁰C for 30 min) while the acid pretreatment (1%: v/v; 140 °C) was least effective pretreatment strategy with the yield of 14.83 wt% sugars/g algal biomass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308246PMC
http://dx.doi.org/10.1016/j.btre.2018.e00298DOI Listing

Publication Analysis

Top Keywords

nitrogen limitation
8
nitrogen supplemented
8
supplemented media
8
sugars/g algal
8
algal biomass
8
enhanced lipid
4
lipid starch
4
starch productivity
4
productivity microalga
4
nitrogen
4

Similar Publications

Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.

View Article and Find Full Text PDF

The presence of pesticide residues in textiles poses a risk to human health. We established a robust and high-throughput liquid chromatography-tandem mass spectrometry method for the determination of 115 pesticide residues in textiles. In this study, we evaluated high-performance liquid chromatography-tandem mass spectrometry conditions and sample extraction methods, including separation performance of different columns, mass conditions, extraction solvent, and extraction time.

View Article and Find Full Text PDF

Gene-environment interactions have been observed for childhood asthma, however few have been assessed in ethnically diverse populations. Thus, we examined how polygenic risk score (PRS) modifies the association between ambient air pollution exposure (nitrogen dioxide [NO], ozone, particulate matter < 2.5 and < 10 μm) and childhood asthma incidence in a diverse cohort.

View Article and Find Full Text PDF

Chemiluminescence of silver and nitrogen doped carbon dots induced by potassium ferricyanide/hydrogen peroxide and its analytical application.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China. Electronic address:

In this study, carbon dots doped with silver and nitrogen (Ag,N-CDs) were synthesized and their application in chemiluminescence (CL) was investigated using the potassium ferricyanide/hydrogen peroxide (KFe(CN)/HO) reaction. Theoretical calculations reveal that Ag doping facilitates a lower excitation energy. The experimental conditions influencing the CL reaction were examined and optimized.

View Article and Find Full Text PDF

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!