Autologous bone remains the gold standard grafting substrate for bone fusions used for small gaps and critical defects. However, significant morbidity is associated with the harvesting of autologous bone grafts and, for that reason, alternative bone graft substitutes have been developed. In the present case series, a glass-reinforced hydroxyapatite synthetic bone substitute, with osteoinductive and osteoconductive proprieties, was applied. This synthetic bone substitute comprises the incorporation of PO-CaO glass-based system within a hydroxyapatite matrix, moulded into spherical pellets with 250-500 μm of diameter. A total of 14 veterinary clinical cases of appendicular bone defects and maxillary / mandibular bone defects are described. In all clinical cases, the synthetic bone substitute was used to fill bone defects, enhancing bone regeneration and complementing the recommended surgical techniques. Results demonstrated that it is an appropriate synthetic bone graft available to be used in veterinary patients. It functioned as a space filler in association with standard orthopaedic and odontological procedures of stabilization, promoting a faster bone fusion without any local or systemic adverse reactions. This procedure improves the animals' quality of life, decreasing pain and post-operative recovery period, as well as increasing bone stability improving positive clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310926 | PMC |
http://dx.doi.org/10.1186/s40824-018-0150-x | DOI Listing |
J Spine Surg
December 2024
Department of Neurosurgery, The Gemelli University Hospital, Rome, Italy.
Background: Aneurysmal bone cysts (ABCs) are benign, blood-filled neoplasms causing bone destruction, often requiring resection. However, challenges arise, especially at the cranio-cervical junction, where proximity to critical structures limits removal. Non-surgical options include selective arterial embolization (SAE) as main treatment, while Denosumab and centrifugated bone marrow emerge as experimental alternatives.
View Article and Find Full Text PDFJ Spine Surg
December 2024
Orthopedic Associates of Hartford, Hartford Hospital Bone and Joint Institute, Hartford, CT, USA.
Background And Objective: As the global population ages, degenerative spinal disorders are on the rise, leading to an increased focus on optimizing spinal fusion therapies. Despite the high success rate of iliac crest bone autografts, their usage is hampered by donor site morbidity and limited supply. The objective of this review is to assess the viability of ceramic-based synthetic materials as alternatives in spinal fusion surgeries.
View Article and Find Full Text PDFJ Bone Joint Surg Am
January 2025
Department of Orthopedic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island.
➢ Jehovah's Witnesses refuse allogeneic blood products based on religious beliefs that create clinical, ethical, and legal challenges in orthopaedic surgery, requiring detailed perioperative planning and specific graft selection.➢ Detailed perioperative planning is particularly important for procedures with high intraoperative blood loss.➢ Graft selection must align with Jehovah's Witnesses patients' religious beliefs, with options including autografts, allografts, and synthetic materials; this requires shared decision-making between the patient and surgeon.
View Article and Find Full Text PDFRegen Ther
March 2025
Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
AO Research Institute Davos, Davos, Switzerland.
Purpose: Optimizing fracture reduction quality is key to achieve successful osteosynthesis, especially for epimetaphyseal regions such as the proximal humerus (PH), but can be challenging, partly due to the lack of a clear endpoint. We aimed to develop the prototype for a novel intraoperative C-arm-based aid to facilitate true anatomical reduction of fractures of the PH.
Methods: The proposed method designates the reduced endpoint position of fragments by superimposing the outer boundary of the premorbid bone shape on intraoperative C-arm images, taking the mirrored intact contralateral PH from the preoperative CT scan as a surrogate.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!