The understanding of developmental patterns of body coloration is challenging because of the multicomponent nature of color signals and the multiple selective pressures acting upon them, which further depend on the sex of the bearer and area of display. Pigmentary colors are thought to be strongly involved in sexual selection, while structural colors are thought to generally associate with conspecifics interactions and improve the discrimination of pigmentary colors. Yet, it remains unclear whether age dependency in each color component is consistent with their potential function. Here, we address lifelong ontogenetic variation in three color components (i.e. UV, pigmentary, and skin background colors) in a birth cohort of common lizards across three ventral body regions (i.e. throat, chest, and belly). All three color components developed sexual dichromatism, with males displaying stronger pigmentary and UV colors but weaker skin background coloration than females. The development of color components led to a stronger sexual dichromatism on the concealed ventral region than on the throat. No consistent signs of late-life decay in color components were found except for a deceleration of UV reflectance increase with age on the throat of males. These results suggest that body color components in common lizards are primarily nonsenescent sexual signals, but that the balance between natural and sexual selection may be altered by the conspicuousness of the area of display. These results further support the view that skin coloration is a composite trait constituted of multiple color components conveying multiple signals depending on age, sex, and body location.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308879PMC
http://dx.doi.org/10.1002/ece3.4369DOI Listing

Publication Analysis

Top Keywords

color components
24
pigmentary colors
12
body coloration
8
color
8
area display
8
colors thought
8
sexual selection
8
three color
8
skin background
8
common lizards
8

Similar Publications

Objective: Post-stroke depression (PSD) affects approximately 40% of stroke survivors, with cognitive deficits being frequently observed. Transcranial Direct Current Stimulation (tDCS) has shown promise in improving cognitive performance in stroke patients. We explored the effects of tDCS on cognitive performance in PSD.

View Article and Find Full Text PDF

The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H.

View Article and Find Full Text PDF

The effects of frying times (1, 2, 3, and 4 min) and temperatures (140, 160, 180, and 200 °C) were investigated on the nutritional components, color, texture, and volatile compounds of three varieties (808, 0912, and LM) from Guizhou, China. Increased frying time and temperature significantly reduced the moisture, polysaccharide, and protein contents, while increasing hardness and chewiness, and decreasing elasticity and extrusion resilience, negatively impacting overall quality. Optimal umami and sweet amino acid retention were achieved by frying at 160 °C frying for 1-3 min or 140-180 °C for 2 min.

View Article and Find Full Text PDF

The authentication of Ziziphi Spinosae Semen (ZSS), Ziziphi Mauritianae Semen (ZMS), and Hovenia Acerba Semen (HAS) has become challenging. The chromatic and textural properties of ZSS, ZMS, and HAS are analyzed in this study. Color features were extracted via RGB, CIELAB, and HSI spaces, whereas texture information was analyzed via the gray-level co-occurrence matrix (GLCM) and Law's texture feature analysis.

View Article and Find Full Text PDF

The cavitation water jet cleaning and coating removal technique represents an innovative sustainable method for cleaning and removing coatings, with the nozzle serving as a crucial component of this technology. Developing an artificially submerged nozzle with a reliable structure and excellent cavitation performance is essential for enhancing cavitation water jets' cleaning and coating removal efficacy in an atmosphere environment (non-submerged state). This study is based on the shear flow cavitation mechanism of an angular nozzle, the resonance principle of an organ pipe, and the jet pump principle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!