To B or Not to B: Understanding B Cell Responses in the Development of Malaria Infection.

Front Immunol

Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.

Published: October 2019

Malaria is a widespread disease caused mainly by the (Pf) and (Pv) protozoan parasites. Depending on the parasite responsible for the infection, high morbidity and mortality can be triggered. To escape the host immune responses, parasites disturb the functionality of B cell subsets among other cell types. However, some antibodies elicited during a malaria infection have the potential to block pathogen invasion and dissemination into the host. Thus, the question remains, why is protection not developed and maintained after the primary parasite exposure? In this review, we discuss different aspects of B cell responses against antigens during malaria infection. Since most studies have focused on the quantification of serum antibody titers, those B cell responses have not been fully characterized. However, to secrete antibodies, a complex cellular response is set up, including not only the activation and differentiation of B cells into antibody-secreting cells, but also the participation of other cell subsets in the germinal center reactions. Therefore, a better understanding of how B cell subsets are stimulated during malaria infection will provide essential insights toward the design of potent interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302011PMC
http://dx.doi.org/10.3389/fimmu.2018.02961DOI Listing

Publication Analysis

Top Keywords

malaria infection
16
cell responses
12
cell subsets
12
understanding cell
8
cell
6
malaria
5
infection
5
responses
4
responses development
4
development malaria
4

Similar Publications

The impact of interethnic lipidomic variation in falciparum malaria.

J Infect

December 2024

Program in Biology, Division of Science, New York University Abu Dhabi; Abu Dhabi, UAE; Center for Genomics and Systems Biology; New York University Abu Dhabi, Abu Dhabi, UAE. Electronic address:

Background: Shifts in dietary patterns during lifestyle transitions are integral components of the dynamic interactions between humans and their environments. Investigating the link between dietary diversity, the composition of the human lipidome and infection is key to understanding the interplay between diet and susceptibility to pathogens.

Methods: Here we address this question by performing a comparative study of two ethnic groups with divergent dietary patterns: Fulani, who are nomad pastoralists with a dairy-centric diet, and Mossi, who are farmers with a plant-based diet.

View Article and Find Full Text PDF

Malaria vector surveillance is required to determine disease transmission dynamics, vector insecticide susceptibility status, suitable control strategies and impact of control interventions. However, capacity and resources for vector surveillance and insecticide resistance monitoring is often inadequate in most countries at risk of vector-borne diseases. Collaborations and linkages between malaria control policy makers and existing research institutions generating vector surveillance research data are often weak, thereby hindering the availability of data for decision-making.

View Article and Find Full Text PDF

The antimalarial activity of transdermal N-89 mediated by inhibiting ERC gene expression in P. Berghei-infected mice.

Parasitol Int

December 2024

Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan. Electronic address:

Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients.

View Article and Find Full Text PDF

Knowing when and where infected mosquitoes bite is required for estimating accurate measures of malaria risk, assessing outdoor exposure, and designing intervention strategies. This study combines secondary analyses of a human behaviour survey and an entomological survey carried out in the same area to estimate human exposure to malaria-infected Anopheles mosquitoes throughout the night in rural villages in south-eastern Tanzania. Mosquitoes were collected hourly from 6PM to 6AM indoors and outdoors by human landing catches in 2019, and tested for Plasmodium falciparum sporozoite infections using ELISA.

View Article and Find Full Text PDF

Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!