Our work reinforces the role of extracellular matrix (ECM) density and matrix metalloprotease activity on the formation of microvasculature from induced pluripotent stem cell (iPSC)-derived vascular cells. The cell-matrix interactions discussed in this study underscore the importance of understanding the role of mechanoregulation and matrix degradation on vasculogenesis and can potentially drive the development of ECM-mimicking angiogenic biomaterials. Furthermore, our work has broader implications concerning the response of iPSC-derived cells to the mechanics of engineered microenvironments. An understanding of these interactions will be critical to creating physiologically relevant transplantable tissue replacements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535961 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2018.0274 | DOI Listing |
Commun Biol
January 2025
Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture.
View Article and Find Full Text PDFCell Discov
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential.
View Article and Find Full Text PDFStem Cell Res
January 2025
Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India. Electronic address:
PGK1 (phosphoglycerate kinase-1) is required for ATP production in the body. Mutation in the PGK1 gene causes a rare, inherited metabolic disorder causing deficiency of enzyme PGK1, leading to hemolytic anemia, neurological symptoms, and muscle weakness. We generated induced pluripotent stem cells (iPSCs) from a patient carrying a PGK1 variant by isolating fibroblasts from skin punch biopsy and reprogramming using CytoTune iPS 2.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States of America.
The hERG1 potassium channel conducts the cardiac repolarizing current, IKr. hERG1 has emerged as a therapeutic target for cardiac diseases marked by prolonged actional potential duration (APD). Unfortunately, many hERG1 activators display off-target and proarrhythmic effects that limit their therapeutic potential.
View Article and Find Full Text PDFHum Genet
January 2025
John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
Developmental anomalies of the hearing organ, the cochlea, are diagnosed in approximately one-fourth of individuals with congenital. The majority of patients with cochlear malformations remain etiologically undiagnosed due to insufficient knowledge about underlying genes or the inability to make conclusive interpretations of identified genetic variants. We used exome sequencing for the genetic evaluation of hearing loss associated with cochlear malformations in three probands from unrelated families deafness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!