Objective: The toxicity of silver nanomaterials in various forms has been extensively evaluated, but the toxicity of silver nanocarbon composites is less well understood. Therefore, silver-carbon nanotube composites (Ag-MWCNT-COOH) and silver-graphene oxide composites (Ag-GO) were synthesized by microwave irradiation and evaluated in two in vitro cell models.

Materials/methods: Toxicity of silver nanosphere (Ag), Ag-MWCNT-COOH and Ag-GO were analyzed by MTS assay and LDH assay in primary C57BL/6 murine alveolar macrophages and human THP-1 cells. Activation of NLRP3 inflammasome by particle variants in these models was done by proxy using LPS co-culture and IL-1β release.

Results: The results depended on the model, as the amount of Ag on the modified carbon resulted in slightly increased toxicity for the murine cells, but did not appear to affect toxicity in the human cell model. IL-1β release from carbon particle-exposures was decreased by the presence of Ag in both cell models. Suspensions of Ag-MWCNT-COOH, Ag-GO and Ag in artificial lysosomal fluid were prepared and ICP-MS was used to detect Ag ions concentration in three silver suspension/solutions. The amount of Ag ions released from Ag-MWCNT-COOH and Ag-GO were similar, which were both lower than that of Ag nanospheres.

Conclusions: The results suggest the bioactivity of silver composites may be related to the amount of Ag ions released, which can be dependent on the cell model under investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397085PMC
http://dx.doi.org/10.1080/08958378.2018.1547334DOI Listing

Publication Analysis

Top Keywords

toxicity silver
12
ag-mwcnt-cooh ag-go
12
cell model
8
amount ions
8
ions released
8
toxicity
5
silver
5
modification nano-silver
4
nano-silver bioactivity
4
bioactivity adsorption
4

Similar Publications

Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.

View Article and Find Full Text PDF

Ozone/Thiosulfate-Assisted Leaching of Cu and Au from Old Flotation Tailings.

Molecules

December 2024

Department of Environment and Sustainable Development, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia.

The growing demand for metal production promotes the search for alternative sources and novel modalities in metallurgy. Flotation tailings are an important secondary mineral resource; however, they might pose a potential environmental threat due to containing toxic metals. Therefore, proper leaching reagent selection is required.

View Article and Find Full Text PDF

Enhanced catalytic transfer hydrogenation of p-nitrophenol using formaldehyde: MnO-supported Ag nanohybrids with tuned d-band structure.

J Colloid Interface Sci

January 2025

Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

Article Synopsis
  • The catalytic reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) is essential in the pharmaceutical and agrochemical sectors, with sustainable methods being a priority.
  • Using manganese dioxide (MnO) supported silver (Ag) nanoparticles (NPs) as a catalyst for the catalytic transfer hydrogenation (CTH) of 4-NP with formaldehyde (HCHO) provides a safer and more efficient alternative due to lower toxicity and easy handling.
  • The study shows that electron transfer from Ag to MnO enhances HCHO activation, resulting in a more effective CTH process, with the optimized 15% Ag/MnO catalyst achieving a significant turnover frequency of 3.83
View Article and Find Full Text PDF

Heavy metals are life-threatening pollutions because of their great toxicity, long-term persistence in nature and their bioaccumulation in living organisms. In this work, we performed multivariate curve resolution-alternating least squares analysis of UV-Vis raw spectra received by a colorimetric sensor constructed on mercaptoundecanoic acid functionalized silver nanoparticles (AgNPs@11MUA) to detect Cd, Cu, Mn, Ni, and Zn in water. This combined approach allowed the rapid identification and quantification of multiple heavy metals and showed adequate sensitivity and selectivity, thus representing a promising analytical and computational method for both laboratory and field applications such as environmental safety and public health monitoring.

View Article and Find Full Text PDF

Silver nitroprusside complex nanoparticles (AgN NPs) have garnered significant attention for their antimicrobial properties. However, challenges such as toxicity and limited biocompatibility often hinder their practical applications. Therefore, this study introduces a combined approach to fabricating AgN NPs with chitosan (CS), resulting in CS-AgN nanocomposites (CS-AgN NCs) with cytocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!