2D metal-organic nanosheets (MONs), akin to graphene, have aroused immense contemporary interest. In our quest to develop functional 2D MONs based on organic linkers designed de novo, we reasoned that benzene-tetrabenzoic acid, which has been exploited tremendously in the construction of pillared metal-organic frameworks (MOFs), could be maneuvered readily to access redox-active MONs based on the benzoquinone/hydroquinone redox couple. Herein, we show that the self-assembly of 2,3,5,6-tetrakis(p-carboxyphenyl)hydroquinone H BTA with Zn(NO ) does lead to 2D metal-organic nanosheets that stack down the y axis, affording a layered Zn MOF. Although the crystals of the latter do not exhibit a discernible chemically induced redox switching behavior, the 2D MONs accessed by ultrasound-induced liquid-phase exfoliation (UILPE) lend themselves to a facile redox switching behavior. Treatment of a dispersion of the 2D MONs in methanol with phenyliodine(III) diacetate (PIDA) results in the oxidation of the hydroquinone core to benzoquinone. Remarkably, the latter can be reverted to the former by treatment with ascorbic acid as a reducing agent; indeed, the redox process can be made out by the naked eye. The results constitute the first example of chemically induced redox switching of 2D MONs. In view of emergent applications of 2D materials in general and MONs in particular, for example, improvement of the performance of membranes in separations by doping with MONs, the redox-switchable property may lead to the development of unique materials with heretofore unexplored potential.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201805188DOI Listing

Publication Analysis

Top Keywords

mons based
12
redox switching
12
mons
9
nanosheets mons
8
metal-organic nanosheets
8
chemically induced
8
induced redox
8
switching behavior
8
redox
5
redox-reversible metal-organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!