Animals have an internal timekeeping system to anticipate daily changes associated with the transition of day to night, which is deeply involved in the regulation and maintenance of behavioral and physiological processes. Prevailing knowledge associated the control of circadian clocks to a network of neurons in the central pacemaker, the suprachiasmatic nucleus (SCN), but astrocytes are rapidly emerging as key cellular contributors to the timekeeping system. However, how these glial cells impact the neuronal clock to modulate rhythmic neurobehavioral outputs just begin to be investigated. Astrocyte-neuron cocultures are an excellent exploratory method to further characterize the critical role of circadian communication between nerve cells, as well as to address the role of astrocytes as modulators and targets of neuronal rhythmic behaviors. Here, we describe a robust method to study astrocyte rhythmic interactions with neurons by coculturing them with primary neurons in physically separated layers. This simple coculture system provides hints on in vivo signaling processes. Moreover, it allows investigating cell-type specific effects separately as well as the identification of extracellular astrocytic or neuronal factors involved in rhythm generation in both cell types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9068-9_10 | DOI Listing |
Bioessays
December 2024
Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
Circadian rhythms are ∼24-h biological oscillations that enable organisms to anticipate daily environmental cycles, so that they may designate appropriate day/night functions that align with these changes. The molecular clock in animals and fungi consists of a transcription-translation feedback loop, the plant clock is comprised of multiple interlocking feedback-loops, and the cyanobacterial clock is driven by a phosphorylation cycle involving three main proteins. Despite the divergent core clock mechanisms across these systems, all circadian clocks are able to buffer period length against changes in the ambient growth environment, such as temperature and nutrients.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA, 48824.
Management of labor in women with diabetes is challenging due to the high risk of peri- and postpartum complications. To avoid cesarean section and assist with labor progression, Pitocin, a synthetic oxytocin, is frequently used to induce and augment labor. However, the efficacy of Pitocin is often compromised in diabetic pregnancies, leading to increased cesarian delivery.
View Article and Find Full Text PDFElife
November 2024
Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
The circadian clock, an internal time-keeping system orchestrates 24 hr rhythms in physiology and behavior by regulating rhythmic transcription in cells. Astrocytes, the most abundant glial cells, play crucial roles in CNS functions, but the impact of the circadian clock on astrocyte functions remains largely unexplored. In this study, we identified 412 circadian rhythmic transcripts in cultured mouse cortical astrocytes through RNA sequencing.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA. Electronic address:
An endogenous time-keeping system found in all kingdoms of life, the endogenous circadian clock, is the source of the essential cyclic change mechanism known as the circadian rhythm. The primary circadian clock that synchronizes peripheral circadian clocks to the proper phase is housed in the anterior hypothalamus's suprachiasmatic nuclei (SCN), which functions as a central pacemaker. According to many epidemiological studies, many cancer types, especially brain tumors, have shown evidence of dysregulated clock gene expression, and the connection between clock and brain tumors is highly specific.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
Today's precision experiments for timekeeping, inertial sensing, and fundamental science place strict requirements on the spectral distribution of laser frequency noise. Rubidium-based experiments utilize table-top 780 nm laser systems for high-performance clocks, gravity sensors, and quantum gates. Wafer-scale integration of these lasers is critical for enabling systems-on-chip.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!