The knowledge of drug metabolising enzymes (DMEs) in cattle is rather limited. The capability of the bovine foetal hepatocyte-derived cell line BFH12 to serve as model for biotransformation was evaluated. Gene expression analysis of DMEs was performed by reverse transcription PCR (RT-PCR). The presence of efflux transporters was visualised by immunocytochemistry, and functional induction of cytochrome P450 (CYP) 1A was assessed by the ethoxyresorufin-O-deethylase (EROD) assay. The production of bile acids was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RT-PCR revealed the expression of cytochromes 1A1, 1A2, 3A4 and phase II enzymes UGT1A1, UGT1A6 and GSTM1. Immunofluorescence demonstrated efflux transporters ABCG2 and ABCC1. The EROD assay revealed a dose-dependent CYP1A induction after treatment with benzo[a]pyrene (BP). LC-MS/MS analysis of cell culture supernatants showed the production of bile acids including taurocholic acid, tauro-chenodeoxycholic acid, taurodeoxycholic acid and taurolithocholic acid. The results strongly suggest the applicability of the cell line BFH12 for subsequent experiments in the emerging field of bovine biotransformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368520PMC
http://dx.doi.org/10.1007/s10616-018-0279-4DOI Listing

Publication Analysis

Top Keywords

cell bfh12
12
hepatocyte-derived cell
8
bovine biotransformation
8
efflux transporters
8
erod assay
8
production bile
8
bile acids
8
evaluation hepatocyte-derived
4
cell
4
bfh12 vitro
4

Similar Publications

Aflatoxin B1 (AFB1) is a pro-carcinogenic compound bioactivated in the liver by cytochromes P450 (CYPs). In mammals, CYP1A and CYP3A are responsible for AFB1 metabolism, with the formation of the genotoxic carcinogens AFB1-8,9-epoxide and AFM1, and the detoxified metabolite AFQ1. Due to climate change, AFB1 cereals contamination arose in Europe.

View Article and Find Full Text PDF

Generation and characterization of cytochrome P450 3A74 CRISPR/Cas9 knockout bovine foetal hepatocyte cell line (BFH12).

Biochem Pharmacol

June 2024

Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy. Electronic address:

In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified.

View Article and Find Full Text PDF

The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) induces lipid peroxidation and mortality in bovine foetal hepatocyte-derived cells (BFH12), with underlying transcriptional perturbations associated mainly with cancer, cellular damage, inflammation, bioactivation, and detoxification pathways. In this cell line, curcumin and resveratrol have proven to be effective in mitigating AFB1-induced toxicity. In this paper, we preliminarily assessed the potential anti-AFB1 activity of a natural polyphenol, quercetin (QUE), in BFH12 cells.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is a food contaminant metabolized mostly in the liver and leading to hepatic damage. Livestock species are differently susceptible to AFB1, but the underlying mechanisms of toxicity have not yet been fully investigated, especially in ruminants. Thus, the aim of the present study was to better characterize the molecular mechanism by which AFB1 exerts hepatotoxicity in cattle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!