Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol.

Appl Biochem Biotechnol

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Published: July 2019

Nano-sized FeO was synthesized by chemical co-precipitation and subsequently modified with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde to introduce aldehyde group on its surface. With the help of "interface activation" by adding sucrose esters-11 as surfactant, lipase from Rhizopus oryzae was successfully immobilized onto the carrier with great enhancement of activity. The hydrolysis activity of immobilized enzyme were 9.16 times and 31.6 times of free enzyme when p-nitrophenol butyrate and p-nitrophenol palmitate were used as substrates. The thermo-stability of immobilized enzyme was also enhanced compared to free enzyme. The immobilized enzyme was successfully applied in synthesis of 1,3-diacyglycerols (1,3-DAG). The specific esterification activity of immobilized enzyme was about 1.5 times of the free enzyme. The immobilized enzyme showed good region-selectivity towards 1,3-diacyglycerols and retained nearly 80% of its activity after reused for 60 times, revealing a good industrial application prospect.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-018-02947-2DOI Listing

Publication Analysis

Top Keywords

immobilized enzyme
20
free enzyme
12
rhizopus oryzae
8
activity immobilized
8
enzyme
8
times free
8
enzyme immobilized
8
immobilized
6
enhanced performance
4
performance rhizopus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!