Nano-sized FeO was synthesized by chemical co-precipitation and subsequently modified with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde to introduce aldehyde group on its surface. With the help of "interface activation" by adding sucrose esters-11 as surfactant, lipase from Rhizopus oryzae was successfully immobilized onto the carrier with great enhancement of activity. The hydrolysis activity of immobilized enzyme were 9.16 times and 31.6 times of free enzyme when p-nitrophenol butyrate and p-nitrophenol palmitate were used as substrates. The thermo-stability of immobilized enzyme was also enhanced compared to free enzyme. The immobilized enzyme was successfully applied in synthesis of 1,3-diacyglycerols (1,3-DAG). The specific esterification activity of immobilized enzyme was about 1.5 times of the free enzyme. The immobilized enzyme showed good region-selectivity towards 1,3-diacyglycerols and retained nearly 80% of its activity after reused for 60 times, revealing a good industrial application prospect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-018-02947-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!