Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The aim of this study is to evaluate the differences in the fundus autofluorescence (FAF) signal between the blue light autofluorescence (BAF) from Spectralis® (Heidelberg, CA) and green light autofluorescence (GAF) 200TxTM (OPTOS, UK, in normal subjects and in patients with retinochoroidopathies (RC).
Methods: In this prospective study, FAF was performed using BL (λ = 488 nm) and GL (λ = 532 nm) on normal subjects and patients with RC. The corresponding pairs of BAF and GAF images from both groups were analyzed using Photoshop. The strength of the FAF signal was measured on a gray scale, where optic disc was a standard to indicate absence of AF. In addition, gray values obtained from three identical points (foveal center, and points of hypo and hyper autofluorescence) in the corresponding BAF and GAF images of normal and RC subjects were divided by the optic disc value to calculate autofluorescence signal ratio (R). The R values at fovea (R1), hypoautofluorescent point (R2), and hyperautofluorescent point (R3) were compared between BAF and GAF modalities, in normal and in RC subjects separately.
Results: One hundred six pairs (106 eyes) of FAF images analyzed (37 pairs: normal and 69 pairs: RC subjects). In normal subjects, the mean R1, R2, and R3 values for BAF were (1.5 ± 0.88, 1.23 ± 0.58, and 4.73 ± 2.85, respectively) and for GAF were (0.78 ± 0.20, 0.78 ± 0.20, and 1.62 ± 0.39, respectively). Similarly, in subjects with RC, the mean R1, R2, and R3 values for BAF were (1.68 ± 1.02, 1.66 ± 1.15, and 7.75 ± 6.82, respectively) and for GAF were (0.95 ± 0.59, 0.79 ± 0.45, and 2.50 ± 1.65, respectively). The mean difference in the R1, R2, and R3 ratios between BAF and GAF in normal and in RC subjects was statistically significant (p < 0.001). The strength of the correlation (r) between ratios for BAF and GAF was weak or not statistically significant in both normal and RC subjects (p > 0.05).
Conclusion: The distribution and intensity of the AF signal differ in BAF and GAF and cannot be used interchangeably. In BAF, optic disc signal is always weaker than in other areas, which was not true for GAF where optic disc signal was stronger than fovea and hypoautofluorescent point in both groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325057 | PMC |
http://dx.doi.org/10.1186/s12348-018-0167-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!