Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To compare re-rupture rate, complication rate, and functional outcome after operative versus nonoperative treatment of Achilles tendon ruptures; to compare re-rupture rate after early and late full weight bearing; to evaluate re-rupture rate after functional rehabilitation with early range of motion; and to compare effect estimates from randomised controlled trials and observational studies.
Design: Systematic review and meta-analysis.
Data Sources: PubMed/Medline, Embase, CENTRAL, and CINAHL databases were last searched on 25 April 2018 for studies comparing operative versus nonoperative treatment of Achilles tendon ruptures.
Study Selection Criteria: Randomised controlled trials and observational studies reporting on comparison of operative versus nonoperative treatment of acute Achilles tendon ruptures.
Data Extraction: Data extraction was performed independently in pairs, by four reviewers, with the use of a predefined data extraction file. Outcomes were pooled using random effects models and presented as risk difference, risk ratio, or mean difference, with 95% confidence interval.
Results: 29 studies were included-10 randomised controlled trials and 19 observational studies. The 10 trials included 944 (6%) patients, and the 19 observational studies included 14 918 (94%) patients. A significant reduction in re-ruptures was seen after operative treatment (2.3%) compared with nonoperative treatment (3.9%) (risk difference 1.6%; risk ratio 0.43, 95% confidence interval 0.31 to 0.60; P<0.001; I=22%). Operative treatment resulted in a significantly higher complication rate than nonoperative treatment (4.9% 1.6%; risk difference 3.3%; risk ratio 2.76, 1.84 to 4.13; P<0.001; I=45%). The main difference in complication rate was attributable to the incidence of infection (2.8%) in the operative group. A similar reduction in re-rupture rate in favour of operative treatment was seen after both early and late full weight bearing. No significant difference in re-rupture rate was seen between operative and nonoperative treatment in studies that used accelerated functional rehabilitation with early range of motion (risk ratio 0.60, 0.26 to 1.37; P=0.23; I=0%). No difference in effect estimates was seen between randomised controlled trials and observational studies.
Conclusions: This meta-analysis shows that operative treatment of Achilles tendon ruptures reduces the risk of re-rupture compared with nonoperative treatment. However, re-rupture rates are low and differences between treatment groups are small (risk difference 1.6%). Operative treatment results in a higher risk of other complications (risk difference 3.3%). The final decision on the management of acute Achilles tendon ruptures should be based on patient specific factors and shared decision making. This review emphasises the potential benefits of adding high quality observational studies in meta-analyses for the evaluation of objective outcome measures after surgical treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322065 | PMC |
http://dx.doi.org/10.1136/bmj.k5120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!