Quantification of 3-D intravascular flow is valuable for studying arterial wall diseases but currently there is a lack of effective clinical tools for this purpose. Divergence-free interpolation (DFI) using radial basis function (RBF) is an emerging approach for full-field flow reconstruction using experimental sparse flow field samples. Previous DFI reconstructs full-field flow from scattered 3-D velocity input obtained using phase-contrast magnetic resonance imaging with low temporal resolution. In this study, a new DFI algorithm is proposed to reconstruct full-field flow from scattered 2-D in-plane velocity vectors obtained using ultrafast contrast-enhanced ultrasound (>1000 fps) and particle imaging velocimetry. The full 3-D flow field is represented by a sum of weighted divergence-free RBFs in space. Because the acquired velocity vectors are only in 2-D and hence the problem is ill-conditioned, a regularized solution of the RBF weighting is achieved through singular value decomposition (SVD) and the L-curve method. The effectiveness of the algorithm is determined via numerical experiments for Poiseuille flow and helical flow with added noise, and it is found that an accuracy as high as 95.6% can be achieved for Poiseuille flow (with 5% input noise). Experimental feasibility is also determined by reconstructing full-field 3-D flow from experimental 2-D ultrasound image velocimetry measurements in a carotid bifurcation phantom. The method is typically faster for a range of problems compared with computational fluid dynamics, and has been found to be effective for the three flow cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377386PMC
http://dx.doi.org/10.1016/j.ultrasmedbio.2018.10.031DOI Listing

Publication Analysis

Top Keywords

3-d flow
12
full-field flow
12
flow
11
flow reconstruction
8
divergence-free interpolation
8
contrast-enhanced ultrasound
8
particle imaging
8
imaging velocimetry
8
velocimetry measurements
8
flow field
8

Similar Publications

Comparison of Methods of Eliciting Vital Capacity: Forced Versus Slow Vital Capacity.

J Voice

January 2025

Department of Statistics, Purdue University, Mathematical Sciences Building, 150 N. University Street, Room 231, West Lafayette, IN 47907.

Background: Methods to elicit the vital capacity (VC) include forced vital capacity (FVC) and slow vital capacity (SVC). Because the FVC maneuver can be affected by air trapping or inefficiencies in lung emptying vs. the SVC, the SVC-FVC difference may be substantial and diagnostically meaningful in elderly individuals and patients with respiratory obstruction.

View Article and Find Full Text PDF

Inorganic bioelectric system for nitrate removal with low NO production at cold temperatures of 4 and 10 °C.

Water Res

December 2024

Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark. Electronic address:

Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges.

View Article and Find Full Text PDF

Comprehensive performance of a new-type hybrid membrane bioreactor applied to mainstream anammox process.

J Environ Manage

January 2025

Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.

The new-type submerged granular sludge membrane bioreactor (S-GSMBR) was constructed by installing a membrane module inside an upflow anaerobic sludge blanket. S-GSMBR achieved the fast start-up (47 d) and long-term stable operation (133 d) of mainstream Anammox process as well as the effective control of membrane fouling. The maximum nitrogen removal rate and efficiency were 0.

View Article and Find Full Text PDF

Solar-powered pumping at a remote denitrifying bioreactor.

J Environ Manage

January 2025

Department of Crop Sciences, University of Illinois at Urbana-Champaign, AW-101 Turner Hall, 1103 South Goodwin Avenue, Urbana, IL, USA. Electronic address:

Pumping surface water from a ditch into a denitrifying woodchip bioreactor could improve nitrate-nitrogen (N) removal by minimizing flow variabilities such as early flow cessation at a given subsurface drainage outlet and flashy drainage hydrographs. Few field-scale subsurface drainage bioreactors with pumping configurations have been assessed. Such evaluations would help better bound reasonable expectations of the benefits and drawbacks at these more advanced bioreactors.

View Article and Find Full Text PDF

The objective of this study was to evaluate the efficacy of using 3 yeast-based additives as an alternative to sodium monensin on rumen fermentation parameters using a dual-flow continuous fermentation system. Ten fermenters (1,223 ± 21 mL) were used in 2 simultaneous 5 × 5 Latin squares arrangement with 3 periods of 10 d each, with 7 d for diet adaptation and 3 d for sample collections. Each Latin square assigning either a low or high level of concentrate to beef cattle diets, with 5 specified treatments: Control: no additives; Blend 1: yeast culture (), beta-glucans, fructooligosaccharides, galactooligosaccharides, and mannanoligosaccharides [1,600 mg/kg dry matter (DM)]; Blend 2: Beta-glucan and mannanoligosaccharide fractions from (1,600 mg/kg DM); Yeast Cells: hydrolyzed, inactivated, and spray-dried yeast cells (; 2,133 mg/kg DM); monensin (25 mg/kg DM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!