Oxidative damage plays a critical role in cochlear cell apoptosis, which is central to the physiopathology of noise-induced hearing loss (NIHL). Sirtuin 2 (SIRT2) is an NAD-dependent deacetylase that regulates cellular response to oxidative stress, however, its role in NIHL remains poorly understood. Here, we report that SIRT2 is upregulated in the cochlea after noise exposure. Functionally, the treatment of AK-7, one specific SIRT2 inhibitor, attenuates the progression of NIHL. In addition, AK-7 treatment reduces oxidative nuclear DNA damage and apoptosis in the cochlea after noise exposure. Moreover, AK-7 treatment reduces apoptosis of mouse inner ear HEI-OC1 cells exposed to oxidative stress in vitro. Taken together, these results suggest that SIRT2 inhibition with AK-7 reduces cochlear cell apoptosis through attenuating oxidative stress-induced damage, which may underlie its protective role against NIHL. This study also implies that AK-7 may have potential therapeutic significance in the intervention of NIHL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.12.084DOI Listing

Publication Analysis

Top Keywords

cochlear cell
12
cell apoptosis
12
sirt2 inhibitor
8
noise-induced hearing
8
hearing loss
8
oxidative stress
8
role nihl
8
cochlea noise
8
noise exposure
8
ak-7 treatment
8

Similar Publications

Sensorineural hearing loss (SNHL) is characterized by a compromised cochlear perception of sound waves. Major risk factors for SNHL include genetic mutations, exposure to noise, ototoxic medications, and the aging process. Previous research has demonstrated that inflammation, oxidative stress, apoptosis, and autophagy, which are detrimental to inner ear cells, contribute to the pathogenesis of SNHL; however, the precise mechanisms remain inadequately understood.

View Article and Find Full Text PDF

GJB2 encodes connexin 26 (Cx26), the most commonly mutated gene causing hereditary non-syndromic hearing loss. Cx26 is mainly expressed in supporting cells (SCs) and fibrocytes in the mammalian cochlea. Gene therapy is currently considered the most promising strategy for eradicating genetic diseases.

View Article and Find Full Text PDF

Deafness is the most common form of sensory impairment in humans and frequently caused by defects in hair cells of the inner ear. Here we demonstrate that in male mice which model recessive non-syndromic deafness (DFNB6), inactivation of Tmie in hair cells disrupts gene expression in the neurons that innervate them. This includes genes regulating axonal pathfinding and synaptogenesis, two processes that are disrupted in the inner ear of the mutant mice.

View Article and Find Full Text PDF

Loss of Fascin2 increases susceptibility to cisplatin-induced hearing impairment and cochlear cell apoptosis in mice.

J Otol

July 2024

Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.

Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.

View Article and Find Full Text PDF

Middle ear biofilm and sudden deafness - a light and transmission electron microscopy study.

Front Neurol

December 2024

Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.

Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!