G protein-coupled receptors (GPCRs) are transmembrane proteins that have an important impact in a myriad of cellular functions. Posttranslational modifications on GPCRs are a key processes that allow these proteins to recruit other intracellular molecules. Among these modifications, phosphorylation is the most important way of desensitization of these receptors. Several research groups have described two different desensitization mechanisms: heterologous and homologous desensitization. The first one involves the phosphorylation of the receptors by protein kinases, such as PKC, following the desensitization and internalization of the receptor, while the second one involves the phosphorylation of the receptors by GRKs, allowing for the receptor to recruit β-arrestins to be desensitized and internalized. Interestingly, a few number of studies have described the participation of β-arrestins during the heterologous desensitization process. Hence, the aim of this review is to briefly explore the role that β-arrestins play during the heterologous desensitization of several GPCRs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mcb.2018.08.004DOI Listing

Publication Analysis

Top Keywords

heterologous desensitization
12
role β-arrestins
8
involves phosphorylation
8
phosphorylation receptors
8
desensitization
7
β-arrestins protein-coupled
4
protein-coupled receptor
4
heterologous
4
receptor heterologous
4
desensitization story
4

Similar Publications

CBD and the 5-HT1A receptor: A medicinal and pharmacological review.

Biochem Pharmacol

January 2025

Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA. Electronic address:

Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind to multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated.

View Article and Find Full Text PDF

Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors.

J Biol Chem

December 2024

Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:

Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.

View Article and Find Full Text PDF

The Drosophila neuromuscular junction (NMJ) is a powerful genetic system that has revealed numerous conserved mechanisms for synapse development and homeostasis. The fly NMJ uses glutamate as the excitatory neurotransmitter and relies on kainate-type glutamate receptors and their auxiliary protein Neto for synapse assembly and function. However, despite decades of study, the reconstitution of NMJ glutamate receptors using heterologous systems has been achieved only recently, and there are no reports on the gating properties for the recombinant receptors.

View Article and Find Full Text PDF

A new superior bacteria complementation model was achieved for testing antifolate compounds and investigating antifolate resistance in the dihydrofolate reductase (DHFR) enzyme of the malaria parasite. Earlier models depended on the addition of trimethoprim (TMP) to chemically suppress the host Escherichia coli (Ec) DHFR function. However, incomplete suppression of EcDHFR and potential interference of antibiotics needed to maintain plasmids for complementary gene expression can complicate the interpretations.

View Article and Find Full Text PDF

Oxytocin plays critical roles in the brain as a neuromodulator, regulating social and other affective behavior. However, the regulatory mechanisms controlling oxytocin receptor (OXTR) signaling in neurons remain unexplored. In this study, we have identified robust and rapid-onset desensitization of OXTR response in multiple regions of the mouse brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!