Background: Debate exists over the extent to which dysfunctions arising from mild traumatic brain injury (mTBI) are distinct from posttraumatic stress disorder (PTSD).
Methods: This study investigated 1) the white matter integrity of participants with either mTBI or PTSD, and 2) the relationship between white matter integrity and postconcussive syndrome. The sample comprised 110 civilians (mTBI group = 40; PTSD group = 32; age- and sex-matched trauma-exposed control subjects = 38) recruited from community advertising. Indicators of white matter abnormalities were fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. PTSD symptoms were indexed by the Clinician-Administered PTSD Scale, and postconcussive symptoms were assessed using the Somatic and Psychological Health Report measure.
Results: Fractional anisotropy was reduced in mTBI participants in the corpus callosum, tracts of the brainstem, projection fibers, association fibers, and limbic fibers compared with both PTSD and trauma-exposed control subjects. This decrease in fractional anisotropy was observed in the context of concurrent changes in radial diffusivity, axial diffusivity, and mean diffusivity. Postconcussive symptoms were largely explained by PTSD severity rather than by changes in brain white matter. mTBI appears to be characterized by distinct reductions in white matter integrity, and this cannot be attributed to PTSD.
Conclusions: PTSD symptoms appear to be more strongly associated with postconcussive syndrome than with white matter compromise. These findings extend epidemiological evidence of the relative associations of PTSD and mTBI with postconcussive syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpsc.2018.10.004 | DOI Listing |
J Assoc Res Otolaryngol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.
Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).
Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).
NPJ Parkinsons Dis
January 2025
Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China.
Magnetic resonance imaging and circulating molecular testing are potential methods for diagnosing and treating Parkinson's disease (PD). However, their relationships remain insufficiently studied. Using genome-wide association summary statistics, we found in the general population a genetic negative correlation between white matter tract mean diffusivity and PD (-0.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, PR China. Electronic address:
Aging of the human brain involves intricate biological processes, resulting in complex changes in structure and function. While the effects of aging on gray matter (GM) connectivity are extensively studied, white matter (WM) functional changes have received comparatively less attention. This study examines age-related WM functional dynamics using resting-state fMRI across the adult lifespan.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Radiology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY. Electronic address:
Background: The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies.
Methods: In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM).
J Stroke Cerebrovasc Dis
January 2025
The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China, 315040. Electronic address:
Objective: This study aimed to explore the relationship between the Systemic Inflammatory Response Index (SIRI) and Cerebral Small Vessel Disease (CSVD), focusing on its key imaging markers.
Methods: We enrolled 344 patients admitted to the neurology department between January 2022 and September 2024, comprising 223 patients diagnosed with CSVD and 121 without CSVD. Baseline characteristics were compared between groups, and multivariate logistic regression was performed to assess the impact of SIRI on CSVD risk.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!