Thoracic ultrasound is employed for the diagnosis of many thoracic diseases and is an accepted detection tool of pleural effusions, atelectasis, pneumothorax, and pneumonia. However, the use of ultrasound for the evaluation of parenchymal lung disease, when the organ is still aerated, is a relatively new application. Areas covered: The diagnosis of a normal lung and the differentiation between a normally aerated lung and a lung with interstitial pathology is based on the interpretation of ultrasound artifacts universally known as A and B-Lines. Even though the practical role of lung ultrasound artifacts is accepted by many clinicians, their physical basis and the correlations between these signs and the causal pathology is not known in depth. Expert commentary: In this review, we discuss the meaning of A- and B-Lines in the diagnostic ultrasound imaging of the lung and the acoustic properties of the pleural plane which are at the basis of their generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17476348.2019.1565997 | DOI Listing |
Int J Gynecol Cancer
January 2025
Institute of Image-Guided Surgery, IHU Strasbourg, France; University of Strasbourg, ICube, Laboratory of Engineering, Computer Science and Imaging, Department of Robotics, Imaging, Teledetection and Healthcare Technologies, CNRS, UMR, Strasbourg, France.
Objective: Evaluation of prognostic factors is crucial in patients with endometrial cancer for optimal treatment planning and prognosis assessment. This study proposes a deep learning pipeline for tumor and uterus segmentation from magnetic resonance imaging (MRI) images to predict deep myometrial invasion and cervical stroma invasion and thus assist clinicians in pre-operative workups.
Methods: Two experts consensually reviewed the MRIs and assessed myometrial invasion and cervical stromal invasion as per the International Federation of Gynecology and Obstetrics staging classification, to compare the diagnostic performance of the model with the radiologic consensus.
World J Gastroenterol
January 2025
Department of Internal Medicine, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan.
The challenge of effectively eliminating air during gastrointestinal endoscopy using ultrasound techniques is apparent. This difficulty arises from the intricacies of removing concealed air within the folds of the gastrointestinal tract, resulting in artifacts and compromised visualization. In addition, the overlap of folds with lesions can obscure their depth and size, presenting challenges for an accurate assessment.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
Department of Radiology, College of Medicine, University of Florida, Gainesville, FL.
Purpose: The purpose of this work was to evaluate the image quality of a commercial CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO).
Methods: CT number, noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF), and noise power spectrum (NPS) were assessed using the ACR CT Accreditation phantom scanned with various acquisitions at 80 kV, 100 kV, 120 kV, and 135 kV, each with multiple CTDIvol values of 20 mGy, 40 mGy, and 65 mGy. Artifacts were evaluated in an anthropomorphic head phantom, a cadaver head, and in patient studies.
J Comput Assist Tomogr
January 2025
Department of Radiology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University.
Background: With the widespread use of lumbar pedicle screws for internal fixation, the morphology of the screws and the surrounding tissues should be evaluated. The metal artifact reduction (MAR) technique can reduce the artifacts caused by pedicle screws, improve the quality of computed tomography (CT) images after pedicle fixation, and provide more imaging information to the clinic.
Purpose: To explore whether the MAR+ method, a projection-based algorithm for correcting metal artifacts through multiple iterative operations, can reduce metal artifacts and have an impact on the structure of the surrounding metal.
Photoacoustic microscopy has demonstrated outstanding performance in high-resolution functional imaging. However, in the process of photoacoustic imaging, the photoacoustic signals will be polluted by inevitable background noise. Besides, the image quality is compromised due to the biosafety limitation of the laser.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!