Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study assessed the efficiency of utilizing mixed culture bacteria (MCB) incorporated with individual nanoparticles (NPs), i.e., hematite (α-FeO), nickel oxide (NiO), and zinc oxide (ZnO), dual NPs (α-FeO + NiO, α-FeO + ZnO, and NiO + ZnO), and multi-NPs (α-FeO + NiO + ZnO) for hydrogen production (HP) from industrial wastewater containing mono-ethylene glycol (MEG). When MCB was individually supplemented with α-FeO (200 mg/L), NiO (20 mg/L), and ZnO NPs (10 mg/L), HP improved significantly by 41, 30, and 29%, respectively. Further, key enzymes associated with MEG metabolism, such as alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and hydrogenase (hyd), were rapidly and substantially enhanced in the medium. NiO and ZnO NPs notably promoted ADH and ALDH activities, respectively, while α-FeO exhibited superior impact on hyd activity. Maximum hydrogen production rate was concomitant with higher acetic acid production and lower residual acetaldehyde and ethanol. HP using MCB supplemented with individual NiO (20 mg/L) and ZnO NPs (10 mg/L) further improved by 8.0%-14% when dual and multi-NPs were used; the highest HP was recorded when multi-NPs were used. In addition, NPs incorporation resulted in substantial increase in the relative abundance of Clostridiales (belonging to family Clostridiaceae; > 83%). Overall, this study provides significant insights into the impact of NPs on hydrogen production from MEG-contaminated wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2018.12.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!