Specific PERK inhibitors enhanced glucose-stimulated insulin secretion in a mouse model of type 2 diabetes.

Metabolism

Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul 03080, Republic of Korea. Electronic address:

Published: August 2019

AI Article Synopsis

  • The study explored the effects of PERK inhibitors (PI) on insulin secretion in diabetic conditions, showing that they can enhance glucose-stimulated insulin secretion (GSIS) by reducing PERK phosphorylation.
  • Mice with induced type 2 diabetes were treated with PI and showed significant improvements in GSIS and reductions in blood glucose levels, comparable to a known diabetes medication, glimepiride.
  • These findings suggest that PI could be a promising new therapeutic option for managing type 2 diabetes without altering pancreatic insulin content.

Article Abstract

Background: We have reported that partial PERK attenuation using PERK inhibitors (PI) enhanced glucose-stimulated insulin secretion (GSIS) from pancreatic islets and mice through induction of ER chaperone BIP. Therefore, we investigated if PI would have the same effects in a diabetic condition as well.

Methods: GSK2606414 was treated to mouse islets under 20-mM glucose and 0.5-mM palmitate to examine GSIS. To generate a mouse model of type 2 diabetes mellitus (DM), male C57BL/6J mice were fed with high-fat diet and injected with streptozotocin. Several doses (6-16 mg/kg/day) of GSK2656157 and glimepiride were administrated to the mice for 8 weeks, and metabolic phenotypes were evaluated such as body weight, blood glucose levels, insulin secretion and sensitivity, and then changes in the pancreas were measured.

Results: High-glucose and palmitate treatment significantly increased PERK phosphorylation in the isolated islets. Suppression of GSIS and glucose-stimulated Ca transit was also observed. PI at 40 nM which decreased PERK phosphorylation by 40% significantly recovered the GSIS and cytosolic calcium. In the mice where significant weight gain and prominent hyperglycemia were induced, PI at 10 mg/kg/day significantly enhanced GSIS and reduced blood glucose levels compared to the vehicle. The effects were similar to those by 10 mg/kg/day of glimepiride. Administration of PI did not induce changes in beta cell mass or pancreatic insulin contents, however, high dose PI decreased pancreatic weight.

Conclusion: PI at low dose significantly enhanced GSIS in vitro and in vivo under metabolic stress and improved hyperglycemia in the mice mimicking type 2 DM, suggesting a potential as a new therapeutic approach for type 2 DM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2018.12.007DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
perk inhibitors
8
inhibitors enhanced
8
enhanced glucose-stimulated
8
glucose-stimulated insulin
8
mouse model
8
model type
8
type diabetes
8
blood glucose
8
glucose levels
8

Similar Publications

Context: Defects in insulin secretion and action contribute to the progression of prediabetes to diabetes. However, the contribution of α-cell dysfunction to this process has been unclear.

Objective: Understand the relative contributions of α-cell and β-cell dysfunction to declining glucose tolerance.

View Article and Find Full Text PDF

We assessed whether there is an impactful glucose fraction independent of insulin secretion in autoantibody-positive individuals. Baseline 2-h oral glucose tolerance test data from the TrialNet Pathway to Prevention (TNPTP; = 6190) and Diabetes Prevention Trial-Type 1 (DPT-1; = 705) studies were used. Linear regression of area under the curve (AUC) glucose versus Index60 was performed to identify two fractions: dependent (dAUCGLU) or independent (iAUCGLU) of insulin secretion.

View Article and Find Full Text PDF

Hypoglycemic Effect of Ginsenoside Compound K Mediated by N-Acetylserotonin Derived From Gut Microbiota.

Phytother Res

January 2025

Engineering Research Center of Applied Technology of Pharmacogenomics (Ministry of Education, China), Hunan Key Laboratory of Pharmacomicrobiomics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.

Ginsenoside compound K (GCK) has been proved to have great hypoglycemic effect pertinent to gut microbiota. However, the improvement of high-fat-diet (HFD)-induced type 2 diabetes (T2D) as well as the mechanism of GCK mediated by gut microbiota is not well-known. This study aimed to investigate the hypoglycemic effects and mechanism of GCK on a HFD-induced diabetic mouse model.

View Article and Find Full Text PDF

Bradykinin attenuates NiSO-induced autophagy in MIN6 cells and protects islet function in mice by regulating the PI3K/AKT/mTOR signaling pathway.

Biochem Biophys Res Commun

December 2024

Department of Endocrinology and Metabolism, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China. Electronic address:

Previous studies have shown that nickel sulfate (NiSO) increases autophagy in thyroid cells and tissues. As an important organ of the endocrine system, the pancreas not only contributes to the exocrine function of digestion but also has the endocrine function of regulating blood sugar. However, it remains unknown whether NiSO increases pancreatic autophagy.

View Article and Find Full Text PDF

The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!