The timely discovery of cancer cell resistance in clinical processing and the accurate calculation of drug dosage to reduce and inhibit tumour growth factor in cancer patients are promising technologies in cancer therapy. Here, an optofluidic resonator effectively detects drug interactions with cancer cell processing in real time and enables the calculation of label-free drug-non-small cell lung cancer (NSCLC) epidermal growth factor receptor (EGFR) and binding ratios using molecular fluorescence intensity. According to clinical test and in vivo experimental data, the efficiencies of gefitinib and erlotinib are only 37% and 12% compared to AZD9291, and 0.300 μg of EGFR inactivation requires 0.484 μg of AZD9291, 0.815 μg of gefitinib and 1.348 μg of erlotinib. Experimental results show that the present method allows for the performance detection of drug resistance and for the evaluation of dosage usage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157792 | PMC |
http://dx.doi.org/10.1364/BOE.9.004149 | DOI Listing |
Transl Oncol
January 2025
Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing, Zhejiang, 314000, China. Electronic address:
Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.
View Article and Find Full Text PDFTransl Oncol
January 2025
Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA. Electronic address:
Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.
View Article and Find Full Text PDFBlood
January 2025
H. Lee Moffitt Cancer Center, Tampa, Florida, United States.
Myelodysplastic syndromes/neoplasms (MDS) are a widely heterogenous group of myeloid malignancies characterized by morphologic dysplasia, a defective hematopoiesis, and recurrent genetic abnormalities. The original and revised International Prognostic Scoring Systems (IPSS) have been used to risk-stratify patients with MDS to guide treatment strategies. In higher-risk MDS, the therapeutic approach is geared toward delaying leukemic transformation and prolonging survival.
View Article and Find Full Text PDFBlood
January 2025
Universitätsklinikum Heidelberg, Med. Klinik V, GMMG-Studygroup, Heidelberg, Germany.
The multicenter, phase III GMMG ReLApsE trial (EudraCT-No:2009-013856-61) randomized relapsed and/or refractory multiple myeloma (RRMM) patients equally to lenalidomide/dexamethasone (LEN/DEX, 25mg days 1-21/40mg weekly, 4-week cycles) re-induction, salvage high dose chemotherapy (sHDCT, melphalan 200mg/m2), autologous stem cell transplantation (ASCT) and LEN maintenance (10mg/day; transplant arm, n=139) versus continuous LEN/DEX (control arm, n=138). Ninety-four percent of patients had received frontline HDCT/ASCT. We report an updated analysis of survival endpoints with a median follow-up of 99 months.
View Article and Find Full Text PDFIn unrelated allogeneic hematopoietic cell transplantation (allo-HCT), older and/or HLA-mismatched donors are known risk factors for survival outcomes. In healthy individuals, cytomegalovirus (CMV) seropositivity is associated with impaired adaptive immune systems. We assessed whether the adverse effects of donor risk factors are influenced by the donor CMV serostatus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!