To fully realize the potential of photoacoustic tomography (PAT) in preclinical and clinical applications, rapid measurements and robust reconstructions are needed. Sparse-view measurements have been adopted effectively to accelerate the data acquisition. However, since the reconstruction from the sparse-view sampling data is challenging, both the effective measurement and the appropriate reconstruction should be taken into account. In this study, we present an iterative sparse-view PAT reconstruction scheme, where a concept of virtual parallel-projection matching the measurement condition is introduced to aid the "compressive sensing" in the reconstruction procedure, and meanwhile, the non-local spatially adaptive filtering exploring the information of the mutual similarities in natural images is adopted to recover the unknowns in the transformed sparse domain. Consequently, the reconstructed images with the proposed sparse-view scheme can be evidently improved in comparison to those with the universal back-projection method, for the cases of same sparse views. The proposed approach has been validated by the simulations and experiments, which exhibits desirable performances in image fidelity even from a small number of measuring positions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157779PMC
http://dx.doi.org/10.1364/BOE.9.004569DOI Listing

Publication Analysis

Top Keywords

photoacoustic tomography
8
spatially adaptive
8
adaptive filtering
8
enhancing sparse-view
4
sparse-view photoacoustic
4
tomography combined
4
combined virtually
4
virtually parallel
4
parallel projecting
4
projecting spatially
4

Similar Publications

Pattern recognition analysis in brain research has improved understanding of sensory processing and led to the identification of default brain networks in neuroimaging studies. The current study uses pattern recognition analysis to extend our previous findings showing conditioned fear learning and novelty-exposure (i.e.

View Article and Find Full Text PDF

Measuring whole-brain distributed functional activity is an important unmet need in neuroscience, requiring high temporal resolution and cellular specificity across large volumes. Functional optoacoustic neuro-tomography (FONT) with genetically encoded calcium ion indicators is a promising approach towards this goal. However, it has not yet been applied in the near-infrared (NIR) range that provides deep penetration and low vascular background optimal for neuroimaging.

View Article and Find Full Text PDF

Photoacoustic imaging (PAI) is an emerging hybrid imaging technology that combines the advantages of optical and ultrasound imaging. Despite its excellent imaging capabilities, PAI still faces numerous challenges in clinical applications, particularly sparse spatial sampling and limited view detection. These limitations often result in severe streak artifacts and blurring when using standard methods to reconstruct images from incomplete data.

View Article and Find Full Text PDF

Deep proximal gradient network for absorption coefficient recovery in photoacoustic tomography.

Phys Med Biol

January 2025

North China Electric Power University - Baoding Campus, North China Electric Power University, Baoding, Hebei Province, P.R.China, Baoding, Hebei, 071003, CHINA.

Objective: The optical absorption properties of biological tissues in photoacoustic tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.

View Article and Find Full Text PDF

Thinning of anterolateral thigh flap is challenging. Anatomical studies have shown variations in arterial branching patterns in the subcutaneous layer, which were suspected to be the reason for the high frequency of thinning failures. We attempted to visualize subcutaneous arterial courses preoperatively and perform thinning of perforator flaps using this information appropriately.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!