Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A method based on a dual-type (transmission and fluorescence) hyperspectral microscopic image system was developed to identify species of intestinal fungi. Living fungi are difficult to identify via transmission spectra or fluorescence spectra alone. We propose an identification method based on both fluorescence and transmission spectra that employs a series of image processing methods. Three species of intestinal fungi were used to evaluate the method. The results demonstrate that the specificity of the model trained with dual-type spectra was 98.36%, whereas the specificities achieved by training with fluorescence spectra and transmission spectra alone were 94.04% and 92.88%, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157763 | PMC |
http://dx.doi.org/10.1364/BOE.9.004496 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!