Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flail chest is an uncommon consequence of traumatic injury. Medical management includes mechanical ventilation for internal pneumatic stabilization. Control of respiratory drive is necessary to avoid paradoxical movement and impairment of recovery. Traditional approaches include sedation and neuromuscular blockade, but these measures are at odds with current trends of keeping patients awake and implementing active rehabilitation. We hypothesized that extracorporeal carbon dioxide removal (ECCO2R) would suppress the respiratory drive sufficiently to permit synchronous mechanical ventilation, allowing rib fracture healing in an awake patient with extensive bilateral flail chest. A patient with 21 fractures underwent ECCO2R for 6 weeks to permit internal pneumatic stabilization with mechanical ventilation, targeting a partial pressure of carbon dioxide in arterial blood (PaCO2) of 25-30 mm Hg. The first 2 weeks were performed with extracorporeal membrane oxygenation (ECMO) for bilateral pulmonary contusions and acute respiratory distress syndrome. The last 4 weeks was with low-flow ECCO2R. Respiratory drive was suppressed during both ECMO and ECCO2R phases when the targeted hypocapnia range of 25-30 mm Hg was achieved, permitting synchronous positive pressure ventilation in an awake and cooperative patient undergoing active rehabilitation. Extracorporeal carbon dioxide removal targeting hypocapnia is a potential adjunct in extensive flail chest injury undergoing nonsurgical management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MAT.0000000000000942 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!